
Apache Ant 1.5.3 Manual

Version 0.1

Andrew Peter Marlow

June 29, 2003

ii

c© 2000-2003 Apache Software Foundation. All rights Reserved.
This is the manual for version 1.5.3 of Apache Ant. If your version of Ant

(as verified with ant -version) is older or newer than this version then this
is not the correct manual set. Please use the documentation appropriate to
your current version. Also, if you are using a version older than the most
recent release, we recommend an upgrade to fix bugs as well as provide new
functionality

This document should be distributed as part of the Apache source distribu-
tion.

Linux is a trademark of Linus Torvalds
UNIX is a trademark of Bell Laboratories

Contents

1 Introduction 1

2 Getting, Installing and Building Ant 3
2.1 Getting Ant . 3

2.1.1 Binary Edition . 3
2.1.2 Source Edition . 3

2.2 System Requirements . 3
2.3 Installing Ant . 4

2.3.1 Setup . 5
2.3.2 Optional Tasks . 5
2.3.3 MS-Windows . 5
2.3.4 Unix (bash) . 6
2.3.5 Unix (csh) . 6
2.3.6 Advanced . 6

2.4 Building Ant . 6
2.5 Library Dependencies . 7
2.6 Platform Specific Issues . 9

2.6.1 Unix . 9
2.6.2 Microsoft Windows . 9
2.6.3 Apple MacOS X . 9
2.6.4 Novell Netware . 9
2.6.5 Other platforms . 10

3 Using Ant 11
3.1 Writing a Simple Buildfile . 11
3.2 Projects . 11
3.3 Targets . 12
3.4 Tasks . 13
3.5 Properties . 14
3.6 Built-in Properties . 14
3.7 Example Buildfile . 14
3.8 Token Filters . 16
3.9 Path-like Structures . 16
3.10 Command-line Arguments . 18

iv CONTENTS

3.11 References . 18

4 Running Ant 21
4.1 Command Line . 21
4.2 Command-line Options Summary 22

4.2.1 Examples . 22
4.3 Files . 23
4.4 Environment Variables . 23
4.5 Cygwin Users . 23
4.6 Running Ant via Java . 23

5 Ant Tasks 25
5.1 Overview of Ant Tasks . 25

5.1.1 Archive Tasks . 25
5.1.2 Audit/Coverage Tasks . 26
5.1.3 Compile Tasks . 27
5.1.4 Deployment Tasks . 27
5.1.5 Documentation Tasks . 27
5.1.6 EJB Tasks . 27
5.1.7 Execution Tasks . 27
5.1.8 File Tasks . 28
5.1.9 Java2 Extensions Tasks 29
5.1.10 Logging Tasks . 29
5.1.11 Mail Tasks . 30
5.1.12 Miscellaneous Tasks . 30
5.1.13 .NET Tasks . 30
5.1.14 Pre-process Tasks . 30
5.1.15 Property Tasks . 31
5.1.16 Remote Tasks . 32
5.1.17 SCM Tasks . 32
5.1.18 Testing Tasks . 33
5.1.19 Visual Age for Java Tasks 33

5.2 Core Tasks . 33
5.2.1 Ant . 33
5.2.2 AntCall . 36
5.2.3 AntStructure . 37
5.2.4 Apply/ExecOn . 38
5.2.5 Available . 41
5.2.6 Basename . 43
5.2.7 BuildNumber . 44
5.2.8 BUnzip2 . 45
5.2.9 BZip2 . 45
5.2.10 Checksum . 46
5.2.11 Chmod . 49
5.2.12 Concat . 50
5.2.13 Condition . 51

CONTENTS v

5.2.14 Supported conditions . 52
5.2.15 Copy . 56
5.2.16 Copydir . 59
5.2.17 Copyfile . 61
5.2.18 Cvs . 61
5.2.19 CvsChangeLog . 63
5.2.20 CVSPass . 66
5.2.21 CvsTagDiff . 66
5.2.22 Delete . 69
5.2.23 Deltree . 71
5.2.24 Dependset . 72
5.2.25 Dirname . 73
5.2.26 Ear . 74
5.2.27 Echo . 76
5.2.28 Exec . 77
5.2.29 Fail . 80
5.2.30 Filter . 81
5.2.31 FixCRLF . 82
5.2.32 GenKey . 86
5.2.33 Get . 87
5.2.34 GUnzip/BUnzip2 . 88
5.2.35 GZip/BZip2 . 89
5.2.36 Input . 89
5.2.37 Jar . 90
5.2.38 Java . 94
5.2.39 Javac . 96
5.2.40 Javadoc/Javadoc2 . 103
5.2.41 LoadFile . 113
5.2.42 LoadProperties . 114
5.2.43 Mail . 115
5.2.44 Manifest . 117
5.2.45 Mkdir . 119
5.2.46 Move . 119
5.2.47 Parallel . 121
5.2.48 Patch . 122
5.2.49 PathConvert . 123
5.2.50 Property . 125
5.2.51 Record . 128
5.2.52 Rename . 131
5.2.53 Replace . 132
5.2.54 Rmic . 134
5.2.55 Sequential . 137
5.2.56 SignJar . 138
5.2.57 Sleep . 139
5.2.58 Sql . 140
5.2.59 Xslt/Style . 144

vi CONTENTS

5.2.60 Tar . 148
5.2.61 Taskdef . 151
5.2.62 Tempfile . 152
5.2.63 Touch . 153
5.2.64 TStamp . 154
5.2.65 Typedef . 156
5.2.66 Unjar/Untar/Unwar/Unzip 157
5.2.67 Untar . 158
5.2.68 Unwar . 159
5.2.69 Unzip . 161
5.2.70 Uptodate . 162
5.2.71 Waitfor . 164
5.2.72 War . 166
5.2.73 XmlProperty . 169
5.2.74 Xslt . 170
5.2.75 Zip . 173

5.3 Optional Tasks . 178
5.3.1 NET Tasks . 178
5.3.2 ANTLR . 184
5.3.3 Cab . 186
5.3.4 Clearcase Tasks . 188
5.3.5 Continuus/Synergy Tasks 191
5.3.6 Depend . 193
5.3.7 EJB Tasks . 196
5.3.8 Echoproperties . 222
5.3.9 FTP . 223
5.3.10 IContract . 227
5.3.11 Jarlib-available . 229
5.3.12 Jarlib-display . 231
5.3.13 Jarlib-manifest . 232
5.3.14 Jarlib-resolve . 234
5.3.15 JavaCC . 236
5.3.16 Javah . 238
5.3.17 JspC . 240
5.3.18 JDepend . 243
5.3.19 JJTree . 245
5.3.20 Jlink . 247
5.3.21 JProbe Coverage . 249
5.3.22 JUnit . 255
5.3.23 Description . 255
5.3.24 JUnitReport . 261
5.3.25 Metamata Metrics . 262
5.3.26 Metamata Audit . 264
5.3.27 MimeMail . 267
5.3.28 MParse . 268
5.3.29 Native2Ascii . 270

CONTENTS vii

5.3.30 NetRexxC . 271
5.3.31 Perforce Tasks . 274
5.3.32 PropertyFile . 279
5.3.33 Pvcs . 281
5.3.34 RenameExtensions . 284
5.3.35 ReplaceRegExp . 284
5.3.36 Rpm . 286
5.3.37 ServerDeploy . 287
5.3.38 Setproxy . 290
5.3.39 Script . 290
5.3.40 Sound . 291
5.3.41 SourceOffSite . 292
5.3.42 Splash . 295
5.3.43 Starteam Tasks . 296
5.3.44 Stylebook . 308
5.3.45 Telnet . 308
5.3.46 Test . 310
5.3.47 Translate . 310
5.3.48 Visual Age for Java Tasks 312
5.3.49 Microsoft Visual SourceSafe Tasks 317
5.3.50 Weblogic JSP Compiler 322
5.3.51 XmlValidate . 322

6 Concepts and Types 325
6.1 Concepts . 325

6.1.1 build.sysclasspath . 325
6.1.2 Common Attributes of all Tasks 325

6.2 Core Types . 326
6.2.1 Description . 326
6.2.2 Directory-based Tasks . 326
6.2.3 DirSet . 330
6.2.4 FileList . 332
6.2.5 FileSet . 332
6.2.6 File Mappers . 334
6.2.7 Filter Chains and Filter Readers 338
6.2.8 FilterSet . 345
6.2.9 PatternSet . 346
6.2.10 Path-like Structures . 348
6.2.11 Selectors . 351
6.2.12 XMLCatalog . 359

6.3 Optional Types . 362
6.3.1 ClassFileSet . 362
6.3.2 Extension Package . 363
6.3.3 Set of Extension Packages 363

viii CONTENTS

7 Loggers and Listeners 365
7.1 Overview . 365

8 Editor/IDE Integration 369
8.1 Antidote . 369

8.1.1 Overview . 369
8.2 AntRunner for JBuilder . 370
8.3 AntWork Plugin for the Jext - Java Text Editor 370
8.4 Emacs . 370
8.5 IDEA . 371

9 Developing with Ant 373
9.1 Writing Your Own Task . 373
9.2 Tasks Desgined for Extension . 377
9.3 Build Events . 378
9.4 Source code integration . 378
9.5 InputHandler . 379

9.5.1 Overview . 379
9.6 Using Ant Tasks Outside of Ant 380

9.6.1 Rationale . 380

10 Ant API 383

11 License 385

12 Feedback and Troubleshooting 387

13 Authors 389

Chapter 1

Introduction

Apache Ant is a Java-based build tool. In theory, it is kind of like make, without
make’s wrinkles.

Why?
Why another build tool when there is already make, gnumake, nmake, jam,
and others? Because all those tools have limitations that Ant’s original author
couldn’t live with when developing software across multiple platforms. Make-
like tools are inherently shell-based: they evaluate a set of dependencies, then
execute commands not unlike what you would issue on a shell. This means that
you can easily extend these tools by using or writing any program for the OS
that you are working on; however, this also means that you limit yourself to the
OS, or at least the OS type, such as Unix, that you are working on.

Makefiles are inherently evil as well. Anybody who has worked on them for
any time has run into the dreaded tab problem. ”Is my command not executing
because I have a space in front of my tab?!!” said the original author of Ant
way too many times. Tools like Jam took care of this to a great degree, but still
have yet another format to use and remember.

Ant is different. Instead of a model where it is extended with shell-based
commands, Ant is extended using Java classes. Instead of writing shell com-
mands, the configuration files are XML-based, calling out a target tree where
various tasks get executed. Each task is run by an object that implements a
particular Task interface.

Granted, this removes some of the expressive power that is inherent in being
able to construct a shell command such as ‘find . -name foo -exec rm ‘, but it
gives you the ability to be cross-platform - to work anywhere and everywhere.
And hey, if you really need to execute a shell command, Ant has an <exec> task
that allows different commands to be executed based on the OS it is executing
on.

1 of 389

2 Introduction

2 of 389

Chapter 2

Getting, Installing and
Building Ant

2.1 Getting Ant

2.1.1 Binary Edition

The latest stable version of Ant is available from the Ant web page
http://ant.apache.org/. If you like living on the edge, you can download the
latest version from
http://cvs.apache.org/builds/ant/nightly/.

2.1.2 Source Edition

If you prefer the source edition, you can download the source for the latest Ant
release from http://ant.apache.org/srcdownload.cgi. Again, if you prefer
the edge, you can access the code as it is being developed via CVS. The Jakarta
website has details on accessing CVS. Please checkout the ant module. See the
section Building Ant on how to build Ant from the source code. You can also
access the Ant CVS repository on-line.

2.2 System Requirements

Ant has been used successfully on many platforms, including Linux, commercial
flavours of Unix such as Solaris and HP-UX, Windows 9x and NT, Novell Net-
ware 6 and MacOS X. To build and use Ant, you must have a JAXP-compliant
XML parser installed and available on your classpath.

The binary distribution of Ant includes the latest version of the Apache
Xerces2 XML parser. Please see http://java.sun.com/xml/ for more infor-
mation about JAXP. If you wish to use a different JAXP-compliant parser,

3 of 389

4 Getting, Installing and Building Ant

you should remove xercesImpl.jar and xml-apis.jar from Ant’s lib direc-
tory. You can then either put the jars from your preferred parser into Ant’s lib
directory or put the jars on the system classpath.

For the current version of Ant, you will also need a JDK installed on your
system, version 1.1 or later. Some tasks work better on post-1.1 systems; some
tasks only work on Java 1.2 and successors. A future version of Ant -Ant 2.0-
will require JDK 1.2 or later, though Ant 1.x strives to retain 1.1 compatibility.

Note: The Microsoft JVM/JDK is not adequate on its own, although the
MS compiler is supported.

Note #2: If a JDK is not present, only the JRE runtime, then many tasks
will not work.

2.3 Installing Ant

The binary distribution of Ant consists of the following directory layout:

ant
+--- bin // contains launcher scripts
|
+--- lib // contains Ant jars plus necessary dependencies
|
+--- docs // contains documentation
| +--- ant2 // a brief description of ant2 requirements
| |
| +--- images // various logos for html documentation
| |
| +--- manual // Ant documentation (a must read ;-)
|
+--- etc // contains xsl goodies to:

// - create an enhanced report from xml output of various tasks.
// - migrate your build files and get rid of ’deprecated’ warning
// - ... and more ;-)

Only the bin and lib directories are required to run Ant. To install Ant,
choose a directory and copy the distribution file there. This directory will be
known as ANT HOME.

Windows 95, Windows 98 and Windows ME Note:

On these systems, the script used to launch Ant will have problems if ANT HOME
is a long filename (i.e. a filename which is not of the format known as “8.3”).
This is due to limitations in the OS’s handling of the ”for” batch-file statement.
It is recommended, therefore, that Ant be installed in a short, 8.3 path, such
as C:\Ant.

4 of 389

2.3 Installing Ant 5

On these systems you will also need to configure more environment space to
cater for the environment variables used in the Ant launch script. To do this,
you will need to add or update the following line in the config.sys file

shell=c:\command.com c:\ /p /e:32768

2.3.1 Setup

Before you can run ant there is some additional set up you will need to do:

• Add the bin directory to your path.

• Set the ANT HOME environment variable to the directory where you in-
stalled Ant. On some operating systems the ant wrapper scripts can guess
ANT HOME (Unix dialects and Windows NT/2000) - but it is better to not
rely on this behavior.

• Optionally, set the JAVA HOME environment variable (see the Advanced
section below). This should be set to the directory where your JDK is
installed.

Note: Do not install Ant’s ant.jar file into the lib/ext directory of the
JDK/JRE. Ant is an application, whilst the extension directory is intended
for JDK extensions. In particular there are security restrictions on the classes
which may be loaded by an extension.

2.3.2 Optional Tasks

Ant supports a number of optional tasks. An optional task is a task which typ-
ically requires an external library to function. The optional tasks are packaged
together with the core Ant tasks.

The external libraries required by each of the optional tasks is detailed in the
Library Dependencies section. These external libraries may either be placed in
Ant’s lib directory, where they will be picked up automatically, or made available
on the system CLASSPATH environment variable.

2.3.3 MS-Windows

Assume Ant is installed in c:\ant. The following sets up the environment:

set ANT_HOME=c:\ant
set JAVA_HOME=c:\jdk1.2.2
set PATH=%PATH%;%{\tt ANT_HOME}%\bin

5 of 389

6 Getting, Installing and Building Ant

2.3.4 Unix (bash)

Assume Ant is installed in /usr/local/ant. The following sets up the environ-
ment:

export ANT_HOME=/usr/local/ant
export JAVA_HOME=/usr/local/jdk-1.2.2
export PATH=${PATH}:${ANT_HOME}/bin

2.3.5 Unix (csh)

setenv ANT_HOME /usr/local/ant
setenv JAVA_HOME /usr/local/jdk-1.2.2
set path=($path ANT_HOME/bin)

2.3.6 Advanced

There are lots of variants that can be used to run Ant. What you need is at
least the following:

• The classpath for Ant must contain ant.jar and any jars/classes needed
for your chosen JAXP-compliant XML parser.

• When you need JDK functionality (such as for the javac task or the rmic
task), then for JDK 1.1, the classes.zip file of the JDK must be added
to the classpath; for JDK 1.2 or JDK 1.3, tools.jar must be added. The
scripts supplied with Ant, in the bin directory, will add the required JDK
classes automatically, if the JAVA HOME environment variable is set.

• When you are executing platform-specific applications, such as the exec
task or the cvs task, the property ant.home must be set to the directory
containing where you installed Ant. Again this is set by the Ant scripts
to the value of the ANT HOME environment variable.

The supplied ant shell scripts all support an ANT OPTS environment variable
which can be used to supply extra options to ant. Some of the scripts also
read in an extra script stored in the users home directory, which can be used
to set such options. Look at the source for your platform’s invocation script for
details.

2.4 Building Ant

To build Ant from source, you can either install the Ant source distribution or
checkout the ant module from CVS.

Once you have installed the source, change into the installation directory.
Set the JAVA HOME environment variable to the directory where the JDK is

installed. See Installing Ant for examples on how to do this for your operating
system.

6 of 389

2.5 Library Dependencies 7

Make sure you have downloaded any auxiliary jars required to build tasks
you are interested in. These should either be available on the CLASSPATH or
added to the lib directory. See Library Dependencies (section 2.5 for a list of
jar requirements for various features. Note that this will make the auxiliary jars
available for the building of Ant only. For running Ant you will still need to
make the jars available as described under Installing Ant.

Your are now ready to build Ant:

build -Ddist.dir=<directory_to_contain_Ant_distribution> dist (Windows)

build.sh -Ddist.dir=<directory_to_contain_Ant_distribution> dist (Unix)

This will create a binary distribution of Ant in the directory you specified.
The above action does the following:

• If necessary it will bootstrap the Ant code. Bootstrapping involves the
manual compilation of enough Ant code to be able to run Ant. The
bootstrapped Ant is used for the remainder of the build steps.

• Invokes the bootstrapped Ant with the parameters passed to the build
script. In this case, these parameters define an Ant property value and
specify the ”dist” target in Ant’s own build.xml file.

On most occasions you will not need to explicitly bootstrap Ant since the
build scripts do that for you. If however, the build file you are using makes
use of features not yet compiled into the bootstrapped Ant, you will need to
manually bootstrap. Run bootstrap.bat (Windows) or bootstrap.sh (UNIX) to
build a new bootstrap version of Ant.

If you wish to install the build into the current ANT HOME directory, you can
use:
build install (Windows)
build.sh install (Unix)
You can avoid the lengthy Javadoc step, if desired, with:
build install-lite (Windows)
build.sh install-lite (Unix)
This will only install the bin and lib directories. Both the install and install-lite
targets will overwrite the current Ant version in ANT HOME.

2.5 Library Dependencies

The following libraries are needed in your CLASSPATH or in the install directory’s
lib directory if you are using the indicated feature. Note that only one of the
regexp libraries is needed for use with the mappers. You will also need to
install the Ant optional jar containing the task definitions to make these tasks
available. Please refer to the Installing Ant / Optional Tasks section above.

7 of 389

8 Getting, Installing and Building Ant

Jar Name Needed for Available at
An XSL trans-
former like Xalan
or XSL:P

style task http://xml.apache.org/xalan-j/index.html for Xalan. XSL:P
used to live at http://www.clc-marketing.com/xslp/, but the link
doesn’t work any longer and we are not aware of a replacement site.

jakarta-regexp-
1.2.jar

regexp type
with mappers

jakarta.apache.org/regexp/

junit.jar junit tasks www.junit.org
xalan.jar junitreport.task xml.apache.org
stylebook.jar stylebook task CVS repository of xml.apache.org
testlet.jar deprecated

test task
Build from the gzip compress tar archive in
http://avalon.apache.org/historiccvs/testlet/

antlr.jar antlr task www.antlr.org
bsf.jar script task oss.software.ibm.com/developerworks/projects/bsf
netrexx.jar netrexx task www2.hursley.ibm.com/netrexx
js.jar javascript with

script task
www.mozilla.org/rhino

jpython.jar python with
script task

www.jpython.org

jacl.jar and tcl-
java.jar

TCL with
script task

www.scriptics.com/java

BeanShell
JAR(s)

BeanShell with
script task

www.beanshell.org

netcomponents.jar ftp and telnet
tasks

www.savarese.org/oro/downloads

bcel.jar classfileset
data type,
Java-
ClassHelper
used by the
ClassCon-
stants filter
reader and op-
tionally used
by ejbjar for
dependency
determination

jakarta.apache.org/bcel/

mail.jar Mail task with
Mime encod-
ing, and the
MimeMail task

http://java.sun.com/products/javamail/

activation.jar Mail task with
Mime encod-
ing, and the
MimeMail task

http://java.sun.com/products/javabeans/glasgow/jaf.html

jdepend.jar jdepend task http://www.clarkware.com/software/JDepend.html

8 of 389

2.6 Platform Specific Issues 9

2.6 Platform Specific Issues

2.6.1 Unix

You should use a GNU version of tar to untar the ant source tree, if you have
downloaded this as a tar file.

• Ant does not preserve file permissions when a file is copied, moved or
archived. Use <chmod> to set permissions, and when creating a tar archive,
use the mode attribute of <tarfileset> to set the permissions in the tar
file.

• Ant is not symbolic link aware in moves, deletes and when recursing down
a tree of directories to build up a list of files. Unexpected things can
happen.

2.6.2 Microsoft Windows

Windows 9x (win95, win98, win98SE and winME) has a batch file system which
does not work fully with long file names, so we recommend that ant and the
JDK are installed into directories without spaces, and with 8.3 filenames. The
Perl and Python launcher scripts do not suffer from this limitation.

All versions of windows are usually case insensitive, although mounted file
systems (Unix drives, Clearcase views) can be case sensitive underneath, con-
fusing patternsets.

Ant can often not delete a directory which is open in an Explorer window.
There is nothing we can do about this short of spawning a program to kill the
shell before deleting directories.

2.6.3 Apple MacOS X

MacOS X is the first of the Apple platforms that Ant supports completely; it is
treated like any other Unix.

2.6.4 Novell Netware

To give the same level of sophisticated control as Ant’s startup scripts on other
platforms, it was decided to make the main ant startup on NetWare be via
a Perl Script, ”runant.pl”. This is found in the bin directory (for instance -
bootstrap\bin or dist\bin).

One important item of note is that you need to set up the following to run
ant:

• CLASSPATH - put ant.jar, xercesImpl.jar, xml-apis.jar and any other
needed jars on the system classpath.

9 of 389

10 Getting, Installing and Building Ant

• ANT OPTS - On NetWare, ANT OPTS needs to include a parameter of the
form, ”-envCWD=ANT HOME”, with ANT HOME being the fully expanded
location of Ant, not an environment variable. This is due to the fact that
the NetWare System Console has no notion of a current working directory.

It is suggested that you create up an ant.ncf that sets up these parameters,
and calls perl ANT HOME/dist/bin/runant.pl

The following is an example of such an NCF file(assuming ant is installed in
’sys:/apache-ant/’):

envset CLASSPATH=SYS:/apache-ant/bootstrap/lib/ant.jar
envset CLASSPATH=$CLASSPATH;SYS:/apache-ant/lib/xercesImpl.jar
envset CLASSPATH=$CLASSPATH;SYS:/apache-ant/lib/xml-apis.jar
envset CLASSPATH=$CLASSPATH;SYS:/apache-ant/lib/optional/junit.jar
envset CLASSPATH=$CLASSPATH;SYS:/apache-ant/bootstrap/lib/optional.jar

setenv ANT_OPTS=-envCWD=sys:/apache-ant
envset ANT_OPTS=-envCWD=sys:/apache-ant
setenv ANT_HOME=sys:/apache-ant/dist/lib
envset ANT_HOME=sys:/apache-ant/dist/lib

perl sys:/apache-ant/dist/bin/runant.pl

Ant works on JVM version 1.3 or higher. You may have some luck running
it on JVM 1.2, but serious problems have been found running Ant on JVM
1.1.7B. These problems are caused by JVM bugs that will not be fixed.

JVM 1.3 is supported on Novell NetWare versions 5.1 and higher.

2.6.5 Other platforms

Support for other platforms is not guaranteed to be complete, as certain tech-
niques to hide platform details from build files need to be written and tested on
every particular platform. Contributions in this area are welcome.

10 of 389

Chapter 3

Using Ant

3.1 Writing a Simple Buildfile

Ant’s buildfiles are written in XML. Each buildfile contains one project and at
least one (default) target. Targets contain task elements. Each task element of
the buildfile can have an id attribute and can later be referred to by the value
supplied to this. The value has to be unique. (For additional information, see
the Tasks section below.)

3.2 Projects

A project has three attributes:
Attribute Description Required
name the name of the project. No
default the default target to use when no target is

supplied.
Yes.

basedir the base directory from which all path cal-
culations are done. This attribute might be
overridden by setting the ”basedir” property
beforehand. When this is done, it must be
omitted in the project tag. If neither the at-
tribute nor the property have been set, the
parent directory of the buildfile will be used.

No

Optionally, a description for the project can be provided as a top-level
<description> element (see the description type).

Each project defines one or more targets. A target is a set of tasks you want
to be executed. When starting Ant, you can select which target(s) you want to
have executed. When no target is given, the project’s default is used.

11 of 389

12 Using Ant

3.3 Targets

A target can depend on other targets. You might have a target for compiling,
for example, and a target for creating a distributable. You can only build a
distributable when you have compiled first, so the distribute target depends on
the compile target. Ant resolves these dependencies.

It should be noted, however, that Ant’s depends attribute only specifies the
order in which targets should be executed - it does not affect whether the target
that specifies the dependency(s) gets executed if the dependent target(s) did
not (need to) run.

Ant tries to execute the targets in the depends attribute in the order they
appear (from left to right). Keep in mind that it is possible that a target can
get executed earlier when an earlier target depends on it:

<target name="A"/>
<target name="B" depends="A"/>
<target name="C" depends="B"/>
<target name="D" depends="C,B,A"/>

Suppose we want to execute target D. From its depends attribute, you might
think that first target C, then B and then A is executed. Wrong! C depends on
B, and B depends on A, so first A is executed, then B, then C, and finally D.

A target gets executed only once, even when more than one target depends
on it (see the previous example).

A target also has the ability to perform its execution if (or unless) a property
has been set. This allows, for example, better control on the building process
depending on the state of the system (java version, OS, command-line property
defines, etc.). To make a target sense this property, you should add the if (or
unless) attribute with the name of the property that the target should react to.
Note: Ant will only check whether the property has been set, the value doesn’t
matter. A property set to the empty string is still an existing property. For
example:

<target name="build-module-A" if="module-A-present"/>
<target name="build-own-fake-module-A" unless="module-A-present"/>

In the first example, if the module-A-present property is set (to any value), the
target will be run. In the second example, if the module-A-present property is
set (again, to any value), the target will not be run.

If no if and no unless attribute is present, the target will always be executed.
The optional description attribute can be used to provide a one-line descrip-

tion of this target, which is printed by the -projecthelp command-line option.
Targets without such a description are deemed internal and will not be listed,
unless either the -verbose or -debug option is used.

It is a good practice to place your tstamp tasks in a so-called initialization
target, on which all other targets depend. Make sure that target is always
the first one in the depends list of the other targets. In this manual, most
initialization targets have the name ”init”.

12 of 389

3.4 Tasks 13

A target has the following attributes:
Attribute Description Required
name the name of the target. Yes
depends a comma-separated list of names of targets on

which this target depends.
No

if the name of the property that must be set in
order for this target to execute.

No

unless the name of the property that must not be set
in order for this target to execute.

No

description a short description of this target’s function. No
A target name can be any alphanumeric string valid in the encoding of the

XML file. The empty string ”” is in this set, as is comma ”,” and space ” ”.
Please avoid using these, as they will not be supported in future Ant versions
because of all the confusion they cause. IDE support of unusual target names,
or any target name containing spaces, varies with the IDE.

Targets beginning with a hyphen such as ”-restart” are valid, and can be
used to name targets that should not be called directly from the command line.

3.4 Tasks

A task is a piece of code that can be executed.
A task can have multiple attributes (or arguments, if you prefer). The value

of an attribute might contain references to a property. These references will be
resolved before the task is executed.

Tasks have a common structure:

<name attribute1="value1" attribute2="value2" ... />

where name is the name of the task, attributeN is the attribute name, and
valueN is the value for this attribute.

There is a set of built-in tasks, along with a number of optional tasks, but
it is also very easy to write your own.

All tasks share a task name attribute. The value of this attribute will be
used in the logging messages generated by Ant.

Tasks can be assigned an id attribute:

<taskname id="taskID" ... />

where taskname is the name of the task, and taskID is a unique identifier for
this task. You can refer to the corresponding task object in scripts or other
tasks via this name. For example, in scripts you could do:

<script ... >
task1.setFoo("bar");

</script>

13 of 389

14 Using Ant

to set the foo attribute of this particular task instance. In another task (written
in Java), you can access the instance via project.getReference(”task1”). Note1:
If ”task1” has not been run yet, then it has not been configured (ie., no attributes
have been set), and if it is going to be configured later, anything you’ve done
to the instance may be overwritten.

Note2: Future versions of Ant will most likely not be backward-compatible
with this behaviour, since there will likely be no task instances at all, only
proxies.

3.5 Properties

A project can have a set of properties. These might be set in the buildfile by
the property task, or might be set outside Ant. A property has a name and a
value; the name is case-sensitive. Properties may be used in the value of task
attributes. This is done by placing the property name between ”${” and ”}” in
the attribute value. For example, if there is a ”builddir” property with the value
”build”, then this could be used in an attribute like this: ${builddir}/classes.
This is resolved at run-time as build/classes.

3.6 Built-in Properties

Ant provides access to all system properties as if they had been defined using a
<property> task. For example, $os.name expands to the name of the operating
system.

For a list of system properties see the Javadoc of System.getProperties.
In addition, Ant has some built-in properties:

basedir the absolute path of the project’s basedir (as set
with the basedir attribute of <project>).

ant.file the absolute path of the buildfile.
ant.version the version of Ant
ant.project.name the name of the project that is currently executing;

it is set in the name attribute of <project>.
ant.java.version the JVM version Ant detected; currently it can hold

the values "1.1", "1.2", "1.3" and "1.4".

3.7 Example Buildfile

<project name="MyProject" default="dist" basedir=".">
<description>

simple example build file
</description>

<!-- set global properties for this build -->
<property name="src" location="src"/>

14 of 389

3.7 Example Buildfile 15

<property name="build" location="build"/>
<property name="dist" location="dist"/>

<target name="init">
<!-- Create the time stamp -->
<tstamp/>
<!-- Create the build directory structure used by compile -->
<mkdir dir="${build}"/>

</target>

<target name="compile" depends="init"
description="compile the source " >

<!-- Compile the java code from ${src} into ${build} -->
<javac srcdir="${src}" destdir="${build}"/>

</target>

<target name="dist" depends="compile"
description="generate the distribution" >

<!-- Create the distribution directory -->
<mkdir dir="${dist}/lib"/>

<!-- Put everything in ${build} into the MyProject-${DSTAMP}.jar file -->
<jar jarfile="${dist}/lib/MyProject-${DSTAMP}.jar" basedir="${build}"/>

</target>

<target name="clean"
description="clean up" >

<!-- Delete the ${build} and ${dist} directory trees -->
<delete dir="${build}"/>
<delete dir="${dist}"/>

</target>
</project>

Notice that we are declaring properties outside any target. The <property>,
<typedef> and <taskdef> tasks are special in that they can be declared outside
any target. When you do this they are evaluated before any targets are executed.
No other tasks can be declared outside targets. We have given some targets
descriptions; this causes the projecthelp invocation option to list them as public
targets with the descriptions; the other target is internal and not listed.

Finally, for this target to work the source in the src subdirectory should be
stored in a directory tree which matches the package names. Check the <javac>
task for details.

15 of 389

16 Using Ant

3.8 Token Filters

A project can have a set of tokens that might be automatically expanded if
found when a file is copied, when the filtering-copy behavior is selected in the
tasks that support this. These might be set in the buildfile by the filter task.

Since this can potentially be a very harmful behavior, the tokens in the
files must be of the form @token@, where token is the token name that is set
in the <filter> task. This token syntax matches the syntax of other build
systems that perform such filtering and remains sufficiently orthogonal to most
programming and scripting languages, as well as with documentation systems.

Note: If a token with the format @token@ is found in a file, but no filter is
associated with that token, no changes take place; therefore, no escaping method
is available - but as long as you choose appropriate names for your tokens, this
should not cause problems.

Warning: If you copy binary files with filtering turned on, you can corrupt
the files. This feature should be used with text files only.

3.9 Path-like Structures

You can specify PATH- and CLASSPATH-type references using both ”:” and ”;”
as separator characters. Ant will convert the separator to the correct character
of the current operating system.

Wherever path-like values need to be specified, a nested element can be used.
This takes the general form of:

<classpath>
<pathelement path="${classpath}"/>
<pathelement location="lib/helper.jar"/>

</classpath>

The location attribute specifies a single file or directory relative to the
project’s base directory (or an absolute filename), while the path attribute ac-
cepts colon- or semicolon-separated lists of locations. The path attribute is
intended to be used with predefined paths - in any other case, multiple elements
with location attributes should be preferred.

As a shortcut, the <classpath> tag supports path and location attributes
of its own, so:

<classpath>
<pathelement path="${classpath}"/>

</classpath>

can be abbreviated to:

<classpath path="${classpath}"/>

16 of 389

3.9 Path-like Structures 17

In addition, DirSets, FileSets, and FileLists can be specified via nested
<dirset>, <fileset>, and <filelist> elements, respectively. Note: The order
in which the files building up a FileSet are added to the path-like structure is
not defined.

<classpath>
<pathelement path="${classpath}"/>
<fileset dir="lib">

<include name="**/*.jar"/>
</fileset>
<pathelement location="classes"/>
<dirset dir="${build.dir}">

<include name="apps/**/classes"/>
<exclude name="apps/**/*Test*"/>

</dirset>
<filelist refid="third-party_jars">

</classpath>

This builds a path that holds the value of ${classpath}, followed by all jar
files in the lib directory, the classes directory, all directories named classes under
the apps subdirectory of ${build.dir}, except those that have the text Test in
their name, and the files specified in the referenced FileList.

If you want to use the same path-like structure for several tasks, you can
define them with a <path> element at the same level as targets, and reference
them via their id attribute - see References for an example.

A path-like structure can include a reference to another path-like structure
via nested <path> elements:

<path id="base.path">
<pathelement path="${classpath}"/>
<fileset dir="lib">

<include name="**/*.jar"/>
</fileset>
<pathelement location="classes"/>

</path>

<path id="tests.path">
<path refid="base.path"/>
<pathelement location="testclasses"/>

</path>

The shortcuts previously mentioned for <classpath> are also valid for <path>.
For example:

<path id="base.path">
<pathelement path="${classpath}"/>

</path>

17 of 389

18 Using Ant

can be written as:

<path id="base.path" path="${classpath}"/>

3.10 Command-line Arguments

Several tasks take arguments that will be passed to another process on the com-
mand line. To make it easier to specify arguments that contain space characters,
nested arg elements can be used.

Attribute Description Required value a single command-line argument; can
contain space characters. Exactly one of these. file The name of a file as a single
command-line argument; will be replaced with the absolute filename of the file.
path A string that will be treated as a path-like string as a single command-
line argument; you can use ; or : as path separators and Ant will convert it
to the platform’s local conventions. line a space-delimited list of command-line
arguments.

It is highly recommended to avoid the line version when possible. Ant will
try to split the command line in a way similar to what a (Unix) shell would do,
but may create something that is very different from what you expect under
some circumstances.

Examples

<arg value="-l -a"/>

is a single command-line argument containing a space character.

<arg line="-l -a"/>

represents two separate command-line arguments.

<arg path="/dir;/dir2:\dir3"/>

is a single command-line argument with the value \dir;\dir2;\dir3 on DOS-based
systems and /dir:/dir2:/dir3 on Unix-like systems.

3.11 References

The id attribute of the buildfile’s elements can be used to refer to them. This
can be useful if you are going to replicate the same snippet of XML over and
over again - using a <classpath> structure more than once, for example.

The following example:

<project ... >
<target ... >

<rmic ...>
<classpath>
<pathelement location="lib/"/>

18 of 389

3.11 References 19

<pathelement path="${java.class.path}/"/>
<pathelement path="${additional.path}"/>

</classpath>
</rmic>

</target>

<target ... >
<javac ...>
<classpath>

<pathelement location="lib/"/>
<pathelement path="${java.class.path}/"/>
<pathelement path="${additional.path}"/>

</classpath>
</javac>

</target>
</project>

could be rewritten as:

<project ... >
<path id="project.class.path">

<pathelement location="lib/"/>
<pathelement path="${java.class.path}/"/>
<pathelement path="${additional.path}"/>

</path>

<target ... >
<rmic ...>
<classpath refid="project.class.path"/>

</rmic>
</target>

<target ... >
<javac ...>
<classpath refid="project.class.path"/>

</javac>
</target>

</project>

All tasks that use nested elements for PatternSets, FileSets or path-like
structures accept references to these structures as well.

19 of 389

20 Using Ant

20 of 389

Chapter 4

Running Ant

4.1 Command Line

If you’ve installed Ant as described in the Installing Ant section, running Ant
from the command-line is simple: just type ant.

When no arguments are specified, Ant looks for a build.xml file in the current
directory and, if found, uses that file as the build file and runs the target specified
in the default attribute of the <project> tag. To make Ant use a build file other
than build.xml, use the command-line option -buildfile file, where file is the name
of the build file you want to use.

If you use the -find [file] option, Ant will search for a build file first in the
current directory, then in the parent directory, and so on, until either a build
file is found or the root of the filesystem has been reached. By default, it will
look for a build file called build.xml. To have it search for a build file other
than build.xml, specify a file argument. Note: If you include any other flags or
arguments on the command line after the -find flag, you must include the file
argument for the -find flag, even if the name of the build file you want to find is
build.xml. You can also set properties on the command line. This can be done
with the -Dproperty=value option, where property is the name of the property,
and value is the value for that property. If you specify a property that is also
set in the build file (see the property task), the value specified on the command
line will override the value specified in the build file. Defining properties on the
command line can also be used to pass in the value of environment variables
- just pass -DMYVAR=%MYVAR% (Windows) or -DMYVAR=$MYVAR (Unix) to
Ant. You can then access these variables inside your build file as ${MYVAR}. You
can also access environment variables using the property task’s environment
attribute.

Options that affect the amount of logging output by Ant are: -quiet, which
instructs Ant to print less information to the console; -verbose, which causes
Ant to print additional information to the console; and -debug, which causes
Ant to print considerably more additional information.

21 of 389

22 Running Ant

It is also possible to specify one or more targets that should be executed.
When omitted, the target that is specified in the default attribute of the project
tag is used.

The -projecthelp option prints out a list of the build file’s targets. Targets
that include a description attribute are listed as ”Main targets”, those without
a description are listed as ”Subtargets”, then the ”Default” target is listed.

4.2 Command-line Options Summary

ant [options] [target [target2 [target3] ...]]
Options:

-help print this message
-projecthelp print project help information
-version print the version information and exit
-diagnostics print information that might be helpful to

diagnose or report problems.
-quiet, -q be extra quiet
-verbose, -v be extra verbose
-debug print debugging information
-emacs produce logging information without adornments
-logfile <file> use given file for log

-l <file> ’’
-logger <classname> the class which is to perform logging
-listener <classname> add an instance of class as a project listener
-buildfile <file> use given buildfile

-file <file> ’’
-f <file> ’’

-D<property>=<value> use value for given property
-propertyfile <name> load all properties from file with -D

properties taking precedence
-inputhandler <class> the class which will handle input requests
-find <file> search for buildfile towards the root of the

filesystem and use it

For more information about -logger and -listener see Loggers and Listeners.
For more information about -inputhandler see InputHandler.

4.2.1 Examples

ant runs Ant using the build.xml file in the current directory, on the default
target.

ant -buildfile test.xml runs Ant using the test.xml file in the current directory,
on the default target.

ant -buildfile test.xml dist runs Ant using the test.xml file in the current
directory, on the target called dist.

22 of 389

4.3 Files 23

ant -buildfile test.xml -Dbuild=build/classes dist runs Ant using the test.xml
file in the current directory, on the target called dist, setting the build property
to the value build/classes.

4.3 Files

The Ant wrapper script for Unix will source (read and evaluate) the file /.antrc
before it does anything. On Windows, the Ant wrapper batch-file invokes
%HOME%\antrc pre.bat at the start and %HOME%\antrc post.bat at the end.
You can use these files, for example, to set/unset environment variables that
should only be visible during the execution of Ant. See the next section for
examples.

4.4 Environment Variables

The wrapper scripts use the following environment variables (if set):

• JAVACMD - full path of the Java executable. Use this to invoke a different
JVM than JAVA HOME/bin/java(.exe).

• ANT OPTS - command-line arguments that should be passed to the JVM.
For example, you can define system properties or set the maximum Java
heap size here.

• ANT ARGS - Ant command-line arguments. For example, set ANT ARGS to
point to a different logger, include a listener, and to include the -find flag.
Note: If you include -find in ANT ARGS, you should include the name of
the build file to find, even if the file is called build.xml.

4.5 Cygwin Users

The Unix launch script that come with Ant works correctly with Cygwin. You
should not have any problems launching Ant form the Cygwin shell. It is im-
portant to note however, that once Ant is runing it is part of the JDK which
operates as a native Windows application. The JDK is not a Cygwin executable,
and it therefore has no knowledge of the Cygwin paths, etc. In particular when
using the <exec> task, executable names such as ”/bin/sh” will not work, even
though these work from the Cygwin shell from which Ant was launched. You
can use an executable name such as ”sh” and rely on that command being
available in the Windows path.

4.6 Running Ant via Java

If you have installed Ant in the do-it-yourself way, Ant can be started with:

23 of 389

24 Running Ant

java -Dant.home=c:\ant org.apache.tools.ant.Main [options] [target]

These instructions actually do exactly the same as the ant command. The
options and target are the same as when running Ant with the ant command.
This example assumes you have set your classpath to include:

• ant.jar

• jars/classes for your XML parser

• the JDK’s required jar/zip files

24 of 389

Chapter 5

Ant Tasks

Given the large number of tasks available with Ant, it may be difficult to get
an overall view of what each task can do. The following tables provide a short
description of each task and a link to the complete documentation.

5.1 Overview of Ant Tasks

5.1.1 Archive Tasks

Task Name Description
BUnzip2 Expands a file packed using GZip or BZip2.
BZip2 Packs a file using the GZip or BZip2 algorithm. This task does not

do any dependency checking; the output file is always generated
Cab Creates Microsoft CAB archive files. It is invoked similar to the

Jar or Zip tasks. This task will work on Windows using the ex-
ternal cabarc tool (provided by Microsoft), which must be located
in your executable path.

Ear An extension of the Jar task with special treatment for files that
should end up in an Enterprise Application archive.

GUnzip Expands a GZip file.
GZip GZips a set of files.
Jar Jars a set of files.
Jlink Deprecated. Use the zipfileset and zipgroupfileset attributes of the

Jar or Zip tasks instead.
Manifest Creates a manifest file.
Rpm Invokes the rpm executable to build a Linux installation file. This

task currently only works on Linux or other Unix platforms with
RPM support.

25 of 389

26 Ant Tasks

Task Name Description
SignJar Signs a jar or zip file with the javasign command-line tool.
Tar Creates a tar archive.
Unjar Unzips a jarfile.
Untar Untars a tarfile.
Unwar Unzips a warfile.
Unzip Unzips a zipfile.
War An extension of the Jar task with special treatment for files that

should end up in the WEB-INF/lib, WEB-INF/classes, or WEB-
INF directories of the Web Application Archive.

Zip Creates a zipfile.

5.1.2 Audit/Coverage Tasks

Task Name Description
JDepend Invokes the JDepend parser. This parser ”traverses a set

of Java source-file directories and generates design-quality
metrics for each Java package”.

JProbe These tasks run the tools from the JProbe suite. This task
was written using JProbe Suite Server Side 3.0.

MMetrics Computes the metrics of a set of Java source files, using the
Metamata Metrics/WebGain Quality Analyzer source-code
analyzer, and writes the results to an XML file.

Maudit Performs static analysis on a set of Java source-code
and byte-code files, using the Metamata Metrics/WebGain
Quality Analyzer source-code analyzer.

26 of 389

5.1 Overview of Ant Tasks 27

5.1.3 Compile Tasks

Task Name Description
Depend Determines which classfiles are out-of-date with respect to

their source, removing the classfiles of any other classes that
depend on the out-of-date classes, forcing the re-compile of
the removed classfiles. Typically used in conjunction with
the Javac task.

Javac Compiles the specified source file(s) within the running
(Ant) VM, or in another VM if the fork attribute is speci-
fied.

JspC Runs the JSP compiler. It can be used to precompile JSP
pages for fast initial invocation of JSP pages, deployment
on a server without the full JDK installed, or simply to
syntax-check the pages without deploying them. The Javac
task can be used to compile the generated Java source. (For
Weblogic JSP compiles, see the Wljspc task.)

NetRexxC Compiles a NetRexx source tree within the running (Ant)
VM.

Rmic Runs the rmic compiler on the specified file(s).
Wljspc Compiles JSP pages using Weblogic’s JSP compiler, we-

blogic.jspc. (For non-Weblogic JSP compiles, see the JspC
task.

5.1.4 Deployment Tasks

Task Name Description
ServerDeploy Task to run a ”hot” deployment tool for vendor-specific

J2EE server.

5.1.5 Documentation Tasks

Task Name Description
Javadoc/Javadoc2 Generates code documentation using the javadoc tool. The

Javadoc2 task is deprecated; use the Javadoc task instead.
Stylebook Executes the Apache Stylebook documentation generator.

Unlike the command-line version of this tool, all three ar-
guments are required to run the Stylebook task.

5.1.6 EJB Tasks

Task Name Description
EJB Tasks (See the documentation describing the EJB tasks.)

5.1.7 Execution Tasks

27 of 389

28 Ant Tasks

Task Name Description
Ant Runs Ant on a supplied buildfile, optionally passing properties (with

possibly new values). This task can be used to build sub-projects.
AntCall Runs another target within the same buildfile, optionally passing prop-

erties (with possibly new values).
Apply/ExecOn Executes a system command. When the os attribute is specified, the

command is only executed when Ant is run on one of the specified op-
erating systems.

Dependset This task compares a set of source files with a set of target files. If any
of the source files is newer than any of the target files, all the target files
are removed.

Exec Executes a system command. When the os attribute is specified, the
command is only executed when Ant is run on one of the specified op-
erating systems.

Java Executes a Java class within the running (Ant) VM, or in another VM
if the fork attribute is specified.

Parallel A container task that can contain other Ant tasks. Each nested task
specified within the <parallel> tag will be executed in its own thread.

Sequential A container task that can contain other Ant tasks. The nested tasks are
simply executed in sequence. Its primary use is to support the sequential
execution of a subset of tasks within the <parallel> tag.

Sleep A task for suspending execution for a specified period of time. Useful
when a build or deployment process requires an interval between tasks.

Waitfor Blocks execution until a set of specified conditions become true. This
task is intended to be used with the Parallel task to synchronize a set of
processes.

5.1.8 File Tasks

Task Name Description
Checksum Generates a checksum for a file or set of files. This task can

also be used to perform checksum verifications.
Chmod Changes the permissions of a file or all files inside the spec-

ified directories. Currently, it has effect only under Unix.
The permissions are also UNIX style, like the arguments
for the chmod command.

Concat Concatenates multiple files into a single one or to Ant’s
logging system.

Copy Copies a file or Fileset to a new file or directory.
Copydir Deprecated. Use the Copy task instead.
Copyfile Deprecated. Use the Copy task instead.
Delete Deletes either a single file, all files and sub-directories in a

specified directory, or a set of files specified by one or more
FileSets.

28 of 389

5.1 Overview of Ant Tasks 29

Task Name Description
Deltree Deprecated. Use the Delete task instead.
Filter Sets a token filter for this project, or reads multiple token

filters from a specified file and sets these as filters. To-
ken filters are used by all tasks that perform file-copying
operations.

FixCRLF Modifies a file to add or remove tabs, carriage returns, line-
feeds, and EOF characters.

Get Gets a file from a URL.
Mkdir Creates a directory. Non-existent parent directories are cre-

ated, when necessary.
Move Moves a file to a new file or directory, or a set(s) of file(s)

to a new directory.
Patch Applies a ”diff” file to originals.
Rename Deprecated. Use the Move task instead.
RenameExtensions Deprecated. Use the Move task with a glob mapper instead.
Replace Replace is a directory-based task for replacing the occur-

rence of a given string with another string in selected file.
ReplaceRegExp Directory-based task for replacing the occurrence of a given

regular expression with a substitution pattern in a file or
set of files.

Tempfile Generates a name for a new temporary file and sets the
specified property to that name.

Touch Changes the modification time of a file and possibly creates
it at the same time.

5.1.9 Java2 Extensions Tasks

Task Name Description
Jarlib-available Check whether an extension is present in a FileSet or an ExtensionSet.

If the extension is present, the specified property is set.
Jarlib-display Display the ”Optional Package” and ”Package Specification” information

contained within the specified jars.
Jarlib-manifest Task to generate a manifest that declares all the dependencies in mani-

fest. The dependencies are determined by looking in the specified path
and searching for Extension/”Optional Package” specifications in the
manifests of the jars.

Jarlib-resolve Try to locate a jar to satisfy an extension, and place the location of the
jar into the specified property.

5.1.10 Logging Tasks

Task Name Description
Record Runs a listener that records the logging output of the build-process

events to a file. Several recorders can exist at the same time. Each
recorder is associated with a file.

29 of 389

30 Ant Tasks

5.1.11 Mail Tasks

Task Name Description
Mail A task to send SMTP email.
MimeMail Deprecated. Use the Mail task instead.

5.1.12 Miscellaneous Tasks

Task Name Description
Echo Echoes text to System.out or to a file.
Fail Exits the current build by throwing a BuildException, optionally printing

additional information.
GenKey Generates a key in keystore.
Input Allows user interaction during the build process by displaying a message

and reading a line of input from the console.
Script Executes a script in a BSF-supported language.
Sound Plays a sound file at the end of the build, according to whether the build

failed or succeeded.
Splash Displays a splash screen.
Sql Executes a series of SQL statements via JDBC to a database. Statements

can either be read in from a text file using the src attribute, or from between
the enclosing SQL tags.

Taskdef Adds a task definition to the current project, such that this new task can
be used in the current project.

TStamp Sets the DSTAMP, TSTAMP, and TODAY properties in the current project,
based on the current date and time.

Typedef Adds a data-type definition to the current project, such that this new type
can be used in the current project.

XmlValidate Checks that XML files are valid (or only well-formed). This task uses the
XML parser that is currently used by Ant by default, but any SAX1/2
parser can be specified, if needed.

5.1.13 .NET Tasks

Task Name Description
.NET Tasks (See the documentation describing the .NET tasks.)

5.1.14 Pre-process Tasks

Task Name Description
ANTLR Invokes the ANTLR Translator generator on a grammar file.

AntStructure Generates a DTD for Ant buildfiles that contains information about all
tasks currently known to Ant.

IContract Instruments Java classes using the iContract DBC preprocessor. This
task can generate a properties file for iControl, a graphical user interface
that lets you turn on/off assertions.

30 of 389

5.1 Overview of Ant Tasks 31

Task Name Description
JavaCC Invokes the JavaCC compiler-compiler on a grammar file.
Javah Generates JNI headers from a Java class.
JJTree Invokes the JJTree preprocessor for the JavaCC compiler-compiler. It

inserts parse-tree building actions at various places in the JavaCC source
that it generates. The output of JJTree is run through JavaCC to create
the parser. This task only invokes JJTree if the grammar file is newer
than the generated JavaCC file.

MParse Invokes the Metamata MParse compiler-compiler on a grammar file.
Native2Ascii Converts files from native encodings to ASCII with escaped Unicode. A

common usage is to convert source files maintained in a native operating
system encoding to ASCII, prior to compilation.

Translate Identifies keys in files, delimited by special tokens, and translates them
with values read from resource bundles.

Xslt/Style Processes a set of documents via XSLT.

5.1.15 Property Tasks

Task Name Description
Available Sets a property if a specified file, directory, class in the classpath, or

JVM system resource is available at runtime.
Basename Sets a property to the last element of a specified path.
BuildNumber Task that can be used to track build numbers.
Condition Sets a property if a certain condition holds true - this is a generalization

of Available and Uptodate.
Dirname Sets a property to the value of the specified file up to, but not including,

the last path element.
Echoproperties Lists the current properties.
LoadFile Loads a file into a property.
LoadProperties Load a file’s contents as Ant properties. This task is equivalent

to using <property file="..."/> except that it supports nested
<filterchain> elements, and it cannot be specified outside a target.

PathConvert Converts a nested path, path reference, filelist reference, or fileset refer-
ence to the form usable on a specified platform and/or to a list of items
separated by the specified separator and stores the result in the specified
property.

Property Sets a property (by name and value), or set of properties (from a file or
resource) in the project.

PropertyFile Creates or modifies property files. Useful when wanting to make unat-
tended modifications to configuration files for application servers and
applications. Typically used for things such as automatically generating
a build number and saving it to a build properties file, or doing date
manipulation.

Uptodate Sets a property if a given target file is newer than a set of source files.
XmlProperty Loads property values from a valid XML file.

31 of 389

32 Ant Tasks

5.1.16 Remote Tasks

Task Name Description
FTP Implements a basic FTP client that can send, receive, list, and delete

files, and create directories.
Telnet Task to automate a remote telnet session. This task uses nested <read>

and <write> tags to indicate strings to wait for and specify text to send.
setproxy Sets Java’s web proxy properties, so that tasks and code run in the same

JVM can have through-the-firewall access to remote web sites.

5.1.17 SCM Tasks

Task Name Description
Cvs Handles packages/modules retrieved from a CVS

repository.
CvsChangeLog Generates an XML report of the changes recorded

in a CVS repository.
CVSPass Adds entries to a .cvspass file. Adding entries to

this file has the same affect as a cvs login com-
mand.

CvsTagDiff Generates an XML-formatted report file of the
changes between two tags or dates recorded in a
CVS repository.

ClearCase Tasks to perform the ClearCase cccheckin, cc-
checkout, ccuncheckout, and ccupdate com-
mands.

Continuus/Synergy Tasks to perform the Continuus ccmcheckin, ccm-
checkout, ccmcheckintask, ccmreconfigure, and
ccmcreateTask commands.

Microsoft Visual SourceSafe Tasks to perform the Visual SourceSafe vssget,
vsslabel, vsshistory, vsscheckin, vsscheckout, vs-
sadd, vsscp, and vsscreate commands.

Perforce Tasks to perform the Perforce p4sync, p4change,
p4edit, p4submit, p4have, p4label, p4counter,
p4reopen, p4revert, and p4add commands.

Pvcs Allows the user extract the latest edition of the
source code from a PVCS repository.

SourceOffSite Tasks to perform the SourceOffSite sosget, sosla-
bel, soscheckin, and soscheckout commands.

StarTeam Tasks to perform the StarTeam stcheckout,
stcheckin, stlabel, and stlist commands. The
Starteam task is deprecated; use STCheckout in-
stead.

32 of 389

5.2 Core Tasks 33

5.1.18 Testing Tasks

Task Name Description
Junit Runs tests from the Junit testing framework. This task

has been tested with JUnit 3.0 up to JUnit 3.7; it won’t
work with versions prior to JUnit 3.0.

hline JunitReport Merges the individual XML files generated by the Junit
task and applies a stylesheet on the resulting merged
document to provide a browsable report of the testcases
results.

Test Executes a unit test in the org.apache.testlet framework.

5.1.19 Visual Age for Java Tasks

Task Name Description
Visual Age for Java Tasks (See the documentation describing the Vi-

sual Age for Java tasks.)

5.2 Core Tasks

5.2.1 Ant

Description

Runs Ant on a supplied buildfile. This can be used to build subprojects.
When the antfile attribute is omitted, the file ”build.xml” in the supplied

directory (dir attribute) is used.
If no target attribute is supplied, the default target of the new project is

used.
By default, all of the properties of the current project will be available in the

new project. Alternatively, you can set the inheritAll attribute to false and only
”user” properties (i.e., those passed on the command-line) will be passed to the
new project. In either case, the set of properties passed to the new project will
override the properties that are set in the new project (See also the property
task).

You can also set properties in the new project from the old project by using
nested property tags. These properties are always passed regardless of the
setting of inheritAll. This allows you to parameterize your subprojects.

References to data types can also be passed to the new project, but by
default they are not. If you set the inheritrefs attribute to true, all references
will be copied, but they will not override references defined in the new project.

Nested <reference> elements can also be used to copy references from the
calling project to the new project, optionally under a different id. References
taken from nested elements will override existing references in the new project.

Inherited references are not available to top level tasks of the child project.

33 of 389

34 Ant Tasks

Parameters

Attribute Description Required
antfile the buildfile to use. Defaults to ”build.xml”. This

file is expected to be a filename relative to the dir
attribute given.

No

dir the directory to use as a basedir for the new Ant
project. Defaults to the current project’s basedir,
unless inheritall has been set to false, in which case
it doesn’t have a default value. This will override the
basedir setting of the called project.

No

target the target of the new Ant project that should be ex-
ecuted. Defaults to the new project’s default target.

No

output Filename to write the ant output to. This is relative
to the value of the dir attribute if it has been set or to
the base directory of the current project otherwise.

No

inheritAll If true, pass all properties to the new Ant project.
Defaults to true.

No

inheritRefs If true, pass all references to the new Ant project.
Defaults to false.

No

Parameters specified as nested elements

property

See the description of the property task. Note that the refid attribute points
to a reference in the calling project, not in the new one.

reference

Used to chose references that shall be copied into the new project, optionally
changing their id.

Attribute Description Required
refid The id of the reference in the

calling project.
Yes

torefid The id of the reference in the new
project.

No, defaults to the value of refid.

Basedir of the new project

The basedir value of the new project is affected by the two attributes dir and
inheritall, see the following table for details:

34 of 389

5.2 Core Tasks 35

dir attribute inheritAll attribute new project’s basedir
value provided true value of dir attribute
value provided false value of dir attribute
omitted true basedir of calling project (the one whose build

file contains the <ant> task).
omitted false basedir attribute of the ¡project¿ element of

the new project

Examples

<ant antfile="subproject/subbuild.xml" dir="subproject" target="compile"/>

<ant dir="subproject"/>

<ant antfile="subproject/property_based_subbuild.xml">
<property name="param1" value="version 1.x"/>
<property file="config/subproject/default.properties"/>

</ant>

<ant inheritAll="false" antfile="subproject/subbuild.xml">
<property name="output.type" value="html"/>

</ant>

The build file of the calling project defines some <path> elements like this:

<path id="path1">
...

</path>
<path id="path2">

...
</path>

and the called build file (subbuild.xml) also defines a <path> with the id path1,
but path2 is not defined:

<ant antfile="subbuild.xml" inheritrefs="true"/>

will not override subbuild’s definition of path1, but make the parent’s definition
of path2 available in the subbuild.

<ant antfile="subbuild.xml"/>

as well as

<ant antfile="subbuild.xml" inheritrefs="false"/>

will neither override path1 nor copy path2.

<ant antfile="subbuild.xml" inheritrefs="false">
<reference refid="path1"/>

</ant>

35 of 389

36 Ant Tasks

will override subbuild’s definition of path1.

<ant antfile="subbuild.xml" inheritrefs="false">
<reference refid="path1" torefid="path2"/>

</ant>

will copy the parent’s definition of path1 into the new project using the id path2

5.2.2 AntCall

Description

Call another target within the same build-file optionally specifying some prop-
erties (param’s in this context)

By default, all of the properties of the current project will be available in the
new project. Alternatively, you can set the inheritAll attribute to false and only
”user” properties (i.e., those passed on the command-line) will be passed to the
new project. In either case, the set of properties passed to the new project will
override the properties that are set in the new project (See also the property
task).

You can also set properties in the new project from the old project by using
nested param tags. These properties are always passed regardless of the setting
of inheritAll. This allows you to parameterize your subprojects.

Nested <reference> elements can be used to copy references from the calling
project to the new project, optionally under a different id. References taken from
nested elements will override existing references in the new project.

When a target is invoked by antcall, all of its dependent targets will also be
called within the context of any new parameters. For example. if the target
”doSomethingElse” depended on the target ”init”, then the antcall of ”doSome-
thingElse” will call ”init” during the call. Of course, any properties defined in
the antcall task or inherited from the calling target will be fixed and not over-
ridable in the init task -or indeed in the ”doSomethingElse” task.

Parameters

Attribute Description Required
target The target to execute. Yes
inheritAll If true, pass all properties to the new

Ant project. Defaults to true.
No

inheritRefs If true, pass all references to the new
Ant project. Defaults to false.

No

Note on inheritRefs

<antcall> will not override existing references, even if you set inheritRefs to
true. As the called build files is the same build file as the calling one, this
means it will not override any reference set via an id attribute at all. The only
references that can be inherited by the child project are those defined by nested

36 of 389

5.2 Core Tasks 37

<reference> elements or references defined by tasks directly (not using the id
attribute).

Inherited references are not available to top level tasks of the child project.

Parameters specified as nested elements

param

Specifies the properties to set before running the specified target. See prop-
erty for usage guidelines.

reference

Used to chose references that shall be copied into the new project, optionally
changing their id.

Attribute Description Required
refid The id of the reference in the calling

project.
Yes

torefid The id of the reference in the new
project.

No, defaults to the value of refid.

Examples

<target name="default">
<antcall target="doSomethingElse">
<param name="param1" value="value"/>

</antcall>
</target>

<target name="doSomethingElse">
<echo message="param1=${param1}"/>

</target>

Will run the target ’doSomethingElse’ and echo ’param1=value’.

<antcall ... >
<reference refid="path1" torefid="path2"/>

</antcall>

will copy the parent’s definition of path1 into the new project using the id path2.

5.2.3 AntStructure

Description

Generates a DTD for Ant buildfiles which contains information about all tasks
currently known to Ant.

37 of 389

38 Ant Tasks

Note that the DTD generated by this task is incomplete, you can always add
XML entities using <taskdef> or <typedef>. See here for a way to get around
this problem.

This task doesn’t know about required attributes, all will be listed as #IM-
PLIED.

Parameters

Attribute Description Required
output file to write the DTD to Yes

Examples

<antstructure output="project.dtd"/>

5.2.4 Apply/ExecOn

The name execon is deprecated and only kept for backwards compatibility.

Description

Executes a system command. When the os attribute is specified, then the
command is only executed when Ant is run on one of the specified operating
systems.

The files and/or directories of a number of FileSets are passed as arguments
to the system command.

If you specify a nested mapper and the dest attribute, the timestamp of each
source file is compared to the timestamp of a target file which is defined by the
nested mapper element and searched for in the given dest.

At least one fileset is required, and you must not specify more than one
mapper.

38 of 389

5.2 Core Tasks 39

Parameters

Task Name Description
Attribute Description Required

executable the command to execute without any com-
mand line arguments.

Yes

dest the directory where the ¡apply¿ expects the
target files will be placed by the command,
when it is executed.

Yes, if you
specify a
nested map-
per

dir the directory in which the command should be
executed.

No

relative whether the filenames should be passed on the
command line as absolute or relative path-
names (relative to the base directory of the
corresponding fileset for source files or the dest
attribute for target files).

No, default is
false

os list of Operating Systems on which the com-
mand may be executed.

No

output the file to which the output of the command
should be redirected.

No

append whether output should be appended to or
overwrite an existing file. Defaults to false.
If you set parallel to false, you will probably
want to set this one to true.

No

outputproperty the name of a property in which the output of
the command should be stored.

No

resultproperty the name of a property in which the return
code of the command should be stored. Only
of interest if failonerror=false. If you set par-
allel to false, only the result of the first execu-
tion will be stored.

No

timeout Stop the command if it doesn’t finish within
the specified time (given in milliseconds).

No

failonerror Stop the buildprocess if the command exits
with a returncode other than 0.

No

failifexecutionfails Stop the build if we can’t start the program.
Defaults to true.

No

skipemptyfilesets Don’t run the command, if no source files
have been found or are newer than their cor-
responding target files.

No, default is
false

parallel Run the command only once, appending all
files as arguments. If false, command will be
executed once for every file. Defaults to false.

No

39 of 389

40 Ant Tasks

Attribute Description Required
type One of file, dir or both. If set to file, only the

names of plain files will be sent to the com-
mand. If set to dir, only the names of direc-
tories are considered.

No, default is
file

newenvironment Do not propagate old environment when new
environment variables are specified.

No, default is
false

vmlauncher Run command using the Java VM’s execution
facilities where available. If set to false the un-
derlying OS’s shell, either directly or through
the antRun scripts, will be used. Under some
operating systems, this gives access to facil-
ities not normally available through the VM
including, under Windows, being able to ex-
ecute scripts, rather than their associated in-
terpreter. If you want to specify the name of
the executable as a relative path to the direc-
tory given by the dir attribute, it may become
necessary to set vmlauncher to false as well.

No, default is
true

Parameters specified as nested elements

fileset

You can use any number of nested <fileset> elements to define the files for
this task and refer to <fileset>s defined elsewhere.

arg

Command line arguments should be specified as nested <arg> elements. See
Command line arguments.

srcfile

By default the file names of the source files will be added to the end of
the command line. If you need to place it somewhere different, use a nested
<srcfile> element between your ¡arg¿ elements to mark the insertion point.

targetfile

<targetfile> is similar to <srcfile> and marks the position of the target
filename on the command line. If omitted, the target filenames will not be
added to the command line at all. This element can only be specified, if you
also define a nested mapper and the dest attribute.

env

It is possible to specify environment variables to pass to the system command
via nested <env> elements. See the description in the section about exec

40 of 389

5.2 Core Tasks 41

Examples

<apply executable="ls">
<arg value="-l"/>
<fileset dir="/tmp">

<patternset>
<exclude name="**/*.txt"/>

</patternset>
</fileset>
<fileset refid="other.files"/>

</apply>

invokes ls -l, adding the absolute filenames of all files below /tmp not ending in
.txt and all files of the FileSet with id other.files to the command line.

<apply executable="somecommand" parallel="false">
<arg value="arg1"/>
<srcfile/>
<arg value="arg2"/>
<fileset dir="/tmp"/>

</apply>

invokes somecommand arg1 SOURCEFILENAME arg2 for each file in /tmp
replacing SOURCEFILENAME with the absolute filename of each file in turn.
If parallel had been set to true, SOURCEFILENAME would be replaced with
the absolute filenames of all files separated by spaces.

<apply executable="cc" dest="src/C" parallel="false">
<arg value="-c"/>
<arg value="-o"/>
<targetfile/>
<srcfile/>
<fileset dir="src/C" includes="*.c"/>
<mapper type="glob" from="*.c" to="*.o"/>

</apply>

invokes cc -c -o TARGETFILE SOURCEFILE for each .c file that is newer than
the corresponding .o, replacing TARGETFILE with the absolute filename of the
.o and SOURCEFILE with the absolute name of the .c file.

5.2.5 Available

Description

Sets a property if a resource is available at runtime. This resource can be a file,
a directory, a class in the classpath, or a JVM system resource.

41 of 389

42 Ant Tasks

If the resource is present, the property value is set to true by default; oth-
erwise, the property is not set. You can set the value to something other than
the default by specifying the value attribute.

Normally, this task is used to set properties that are useful to avoid target
execution depending on system parameters.

Parameters

Attribute Description Required
property The name of the property to set. Yes

value The value to set the property to. Defaults to
”true”.

No

classname The class to look for in the classpath. Yes
file The file to look for. Yes
resource The resource to look for in the JVM. Yes
classpath The classpath to use when looking up class-

name or resource.
No

filepath The path to use when looking up file. No
classpathref The classpath to use, given as a reference to a

path defined elsewhere.
No

type The type of file to look for, either a directory
(type=”dir”) or a file (type=”file”). If not set,
the property will be set if the name specified
in the file attribute exists as either a file or a
directory.

No

ignoresystemclasses Ignore Ant’s runtime classes, using only the
specified classpath. Only affects the ”class-
name” attribute. Defaults to ”false”

No

Parameters specified as nested elements

classpath

Available’s classpath attribute is a path-like structure and can also be set
via a nested <classpath> element.

filepath

Available’s filepath attribute is a path-like structure and can also be set via
a nested <filepath> element.

Examples

<available classname="org.whatever.Myclass" property="Myclass.present"/>

sets the Myclass.present property to the value ”true” if the class org.whatever.Myclass
is found in Ant’s classpath.

42 of 389

5.2 Core Tasks 43

<property name="jaxp.jar" value="./lib/jaxp11/jaxp.jar"/>
<available file="${jaxp.jar}" property="jaxp.jar.present"/>

sets the jaxp.jar.present property to the value ”true” if the file ./lib/jaxp11/jaxp.jar
is found.

<available file="/usr/local/lib" type="dir" property="local.lib.present"/>

sets the local.lib.present property to the value ”true” if the directory /usr/local/lib
is found.

...in project ...
<property name="jaxp.jar" value="./lib/jaxp11/jaxp.jar"/>
<path id="jaxp" location="${jaxp.jar}"/>
...in target ...
<available classname="javax.xml.transform.Transformer"

classpathref="jaxp" property="jaxp11.present"/>

sets the jaxp11.present property to the value ”true” if the class javax.xml.transform.Transformer
is found in the classpath referenced by jaxp (in this case, ./lib/jaxp11/jaxp.jar).

<available property="have.extras" resource="extratasks.properties">
<classpath>

<pathelement location="/usr/local/ant/extra.jar/>
</classpath>

</available>

sets the have.extras property to the value ”true” if the resource-file extratasks.properties
is found.

5.2.6 Basename

Description

Task to determine the basename of a specified file, optionally minus a specified
suffix.

When this task executes, it will set the specified property to the value of the
last path element of the specified file. If file is a directory, the basename will be
the last directory element. If file is a full-path, relative-path, or simple filename,
the basename will be the simple file name, without any directory elements.

Parameters

Attribute Description Required
file The path to take the basename of. Yes
property The name of the property to set. Yes
suffix The suffix to remove from the resulting base-

name (specified either with or without the
”.”).

No

43 of 389

44 Ant Tasks

Examples

<basename property="jar.filename" file="${lib.jarfile}"/>

will set jar.filename to myjar.jar, if lib.jarfile is defined as either a full-path file-
name (eg., /usr/local/lib/myjar.jar), a relative-path filename (eg., lib/myjar.jar),
or a simple filename (eg., myjar.jar).

<basename property="cmdname" file="D:/usr/local/foo.exe" suffix=".exe"/>

will set cmdname to foo.

<property environment="env"/>
<basename property="temp.dirname" file="${env.TEMP}"/>

will set temp.dirname to the last directory element of the path defined for the
TEMP environment variable.

5.2.7 BuildNumber

Description

This is a basic task that can be used to track build numbers.
It will first attempt to read a build number from a file (by default, build.number

in the current directory), then set the property build.number to the value that
was read in (or to 0, if no such value). It will then increment the number by one
and write it back out to the file. (See the PropertyFile task if you need finer
control over things such as the property name or the number format.)

Parameters

Attribute Description Required
file The file to read and write the build

number from/to.
No; defaults to ”build.number”

Examples

<buildnumber/>

Read, increment, and write a build number to the default file, build.number.

<buildnumber file="mybuild.number"/>

Read, increment, and write a build number to the file mybuild.number.

44 of 389

5.2 Core Tasks 45

5.2.8 BUnzip2

Description

Expands a file packed using GZip or BZip2.
If dest is a directory the name of the destination file is the same as src (with

the ”.gz” or ”.bz2” extension removed if present). If dest is omitted, the parent
dir of src is taken. The file is only expanded if the source file is newer than the
destination file, or when the destination file does not exist.

Parameters

Attribute Description Required
src the file to expand. Yes
dest the destination file or directory. No

Examples

<gunzip src="test.tar.gz"/>

expands test.tar.gz to test.tar

<bunzip2 src="test.tar.bz2"/>

expands test.tar.bz2 to test.tar

<gunzip src="test.tar.gz" dest="test2.tar"/>

expands test.tar.gz to test2.tar

<gunzip src="test.tar.gz" dest="subdir"/>

expands test.tar.gz to subdir/test.tar (assuming subdir is a directory).

5.2.9 BZip2

Description

Packs a file using the GZip or BZip2 algorithm. The output file is only generated
if it doesn’t exist or the source file is newer.

Parameters

Attribute Description Required
src the file to gzip/bzip. Yes
zipfile the destination file. Yes

Examples

<gzip src="test.tar" zipfile="test.tar.gz"/>

<bzip2 src="test.tar" zipfile="test.tar.bz2"/>

45 of 389

46 Ant Tasks

5.2.10 Checksum

Description

Generates checksum for files. This task can also be used to perform checksum
verifications.

Parameters

Parameters

Attribute Description Required
file The file to generate checksum for. One of either file or

at least one nested
fileset element.

algorithm Specifies the algorithm to be used to
compute the checksum. Defaults to
”MD5”. Other popular algorithms like
”SHA” may be used as well.

No

provider Specifies the provider of the algorithm. No
fileext The generated checksum file’s name will

be the original filename with ”.” and
fileext added to it. Defaults to the al-
gorithm name being used.

No

property This attribute can mean two different
things, it depends on the presence of
the verifyproperty attribute. If you
don’t set the verifyproperty at-
tribute, property specifies the name of
the property to be set with the gen-
erated checksum value. If you set
the verifyproperty attribute, prop-
erty specifies the checksum you expect
to be generated (the checksum itself,
not a name of a property containing
the checksum). This cannot be speci-
fied when fileext is being used or when
the number of files for which checksums
is to be generated is greater than 1.

No

46 of 389

5.2 Core Tasks 47

Attribute Description Required
forceoverwrite Overwrite existing files even if the desti-

nation files are newer. Defaults to ”no”.
No

verifyproperty Specifies the name of the property to
be set with ”true” or ”false” depending
upon whether the generated checksum
matches the existing checksum. When
this is set, the generated checksum is
not written to a file or property, but
rather, the content of the file or prop-
erty is used to check against the gener-
ated checksum.

No

readbuffersize The size of the buffer)in bytes) to use
when reading a file. Defaults to ”8192”
- you may get a better performance on
big files if you increase this value.

No

Parameters specified as nested elements

fileset

FileSets are used to select files to generate checksums for.

Examples

Example 1

<checksum file="foo.bar"/>

Generates a MD5 checksum for foo.bar and stores the checksum in the destina-
tion file foo.bar.MD5. foo.bar.MD5 is overwritten only if foo.bar is newer than
itself.

Example 2

<checksum file="foo.bar" forceOverwrite="yes"/>

Generates a MD5 checksum for foo.bar and stores the checksum in foo.bar.MD5.
If foo.bar.MD5 already exists, it is overwritten.

Example 3

<checksum file="foo.bar" property="foobarMD5"/>

Generates a MD5 checksum for foo.bar and stores it in the Project Property
foobarMD5.

Example 4

47 of 389

48 Ant Tasks

<checksum file="foo.bar" verifyProperty="isMD5ok"/>

Generates a MD5 checksum for foo.bar, compares it against foo.bar.MD5 and
sets isMD5ok to either true or false, depending upon the result.

Example 5

<checksum file="foo.bar" algorithm="SHA" fileext="asc"/>

Generates a SHA checksum for foo.bar and stores the checksum in the desti-
nation file foo.bar.asc. foo.bar.asc is overwritten only if foo.bar is newer than
itself.

Example 6

<checksum file="foo.bar" property="${md5}" verifyProperty="isEqual"/>

Generates a MD5 checksum for foo.bar, compares it against the value of the
property md5, and sets isEqual to either true or false, depending upon the
result.

Example 7

<checksum>
<fileset dir=".">

<include name="foo*"/>
</fileset>

</checksum>

Works just like Example 1, but generates a .MD5 file for every file that begins
with the name foo.

Example 8

<condition property="isChecksumEqual">
<checksum>

<fileset dir=".">
<include name="foo.bar"/>

</fileset>
</checksum>

</condition>

Works like Example 4, but only sets isChecksumEqual to true, if the checksum
matches - it will never be set to false. This example demonstrates use with the
Condition task.

Note: When working with more than one file, if condition and/or verifyprop-
erty is used, the result will be true only if the checksums matched correctly for
all files being considered.

48 of 389

5.2 Core Tasks 49

5.2.11 Chmod

Description

Changes the permissions of a file or all files inside specified directories. Right
now it has effect only under Unix. The permissions are also UNIX style, like
the argument for the chmod command.

See the section on directory based tasks, on how the inclusion/exclusion of
files works, and how to write patterns.

This task holds an implicit FileSet and supports all of FileSet’s attributes and
nested elements directly. More FileSets can be specified using nested ¡fileset¿
elements.

Parameters

Attribute Description Required

file
dir

the file or single directory of which
the permissions must be changed.
the directory which holds the files
whose permissions must be changed.

exactly one of
the two or nested
<fileset> ele-
ments.

perm the new permissions. Yes
includes comma- or space-separated list of pat-

terns of files that must be included.
No

excludes comma- or space-separated list of pat-
terns of files that must be excluded. No
files (except default excludes) are ex-
cluded when omitted.

No

defaultexcludes indicates whether default excludes
should be used or not (”yes”/”no”).
Default excludes are used when omit-
ted.

No

parallel process all specified files using a single
chmod command. Defaults to true.

No

type One of file, dir or both. If set to file,
only the permissions of plain files are
going to be changed. If set to dir, only
the directories are considered.

No, default is file

Examples

<chmod file="${dist}/start.sh" perm="ugo+rx"/>

makes the ”start.sh” file readable and executable for anyone on a UNIX system.

<chmod dir="${dist}/bin" perm="ugo+rx" includes="**/*.sh"/>

49 of 389

50 Ant Tasks

makes all ”.sh” files below ${dist}/bin readable and executable for anyone on a
UNIX system.

<chmod perm="g+w">
<fileset dir="shared/sources1">

<exclude name="**/trial/**"/>
</fileset>
<fileset refid="other.shared.sources"/>

</chmod>

makes all files below shared/sources1 (except those below any directory named
trial) writable for members of the same group on a UNIX system. In addi-
tion all files belonging to a FileSet with id other.shared.sources get the same
permissions.

5.2.12 Concat

Description

Concatenates a file, or a series of files, to a single file or the console. The desti-
nation file will be created if it does not exist, though the the append attribute
may be used to alter this behavior.

FileSets and/or FileLists are used to select which files are to be concatenated.
There is no singular ’file’ attribute to specify a single file to cat – a fileset or
filelist must also be used in these cases.

Parameters

Attribute Description Required
destfile The destination file for the concatenated stream. If not

specified the console will be used instead.
No

append Specifies whether or not the file specified by ’destfile’ should
be overwritten. Defaults to ”no”.

No

encoding Specifies the encoding for the input files. Please see
http://java.sun.com/products/jdk/1.2/docs/guide/ inter-
nat/encoding.doc.html for a list of possible values. Defaults
to the platform’s default character encoding.

No

Parameters specified as nested elements

fileset

FileSets are used to select files to be concatenated. Note that the order in
which the files selected from a fileset are concatenated is not guaranteed. If this
is an issue, use multiple filesets or consider using filelists.

filelist

50 of 389

5.2 Core Tasks 51

FileLists are used to select files to be concatenated. The file ordering in the
files attribute will be the same order in which the files are concatenated.

Examples

Concatenate a string to a file:

<concat destfile="README">Hello, World!</concat>

Concatenate a series of files to the console:

<concat>
<fileset dir="messages" includes="*important*"/>

</concat>

Concatenate a single file, appending if the destination file exists:

<concat destfile="NOTES" append="true">
<filelist dir="notes" files="note.txt"/>

</concat>

Concatenate a series of files, overwriting if the destination file exists:

<concat destfile="${docbook.dir}/all-sections.xml">
<filelist dir="${docbook.dir}/sections"

files="introduction.xml,overview.xml"/>
<fileset dir="${docbook.dir}"

includes="sections/*.xml"
excludes="introduction.xml,overview.xml"/>

</concat>

5.2.13 Condition

Description

Sets a property if a certain condition holds true - this is a generalization of
Available and Uptodate.

If the condition holds true, the property value is set to true by default;
otherwise, the property is not set. You can set the value to something other
than the default by specifying the value attribute.

Conditions are specified as nested elements, you must specify exactly one
condition.

Parameters

Attribute Description Required
property The name of the property to set. Yes
value The value to set the property to. Defaults to ”true”. No

51 of 389

52 Ant Tasks

Parameters specified as nested elements

All conditions to test are specified as nested elements, for a complete list see
here.

Examples

<condition property="javamail.complete">
<and>

<available classname="javax.activation.DataHandler"/>
<available classname="javax.mail.Transport"/>

</and>
</condition>

sets the property javamail.complete if both the JavaBeans Activation Frame-
work and JavaMail are available in the classpath.

<condition property="isMacOsButNotMacOsX">
<and>

<os family="mac"/>

<not>
<os family="unix"/>

</not>
</and>

</condition>

sets the property isMacOsButNotMacOsX if the current operating system is
MacOS, but not MacOS X - which Ant considers to be in the Unix family as
well.

<condition property="isSunOSonSparc">
<os name="SunOS" arch="sparc"/>

</condition>

sets the property isSunOSonSparc if the current operating system is SunOS and
if it is running on a sparc architecture.

5.2.14 Supported conditions

These are the nested elements that can be used as conditions in the ¡condition¿
and ¡waitfor¿ tasks.

not

The <not> element expects exactly one other condition to be nested into this
element, negating the result of the condition. It doesn’t have any attributes and
accepts all nested elements of the condition task as nested elements as well.

52 of 389

5.2 Core Tasks 53

and

The <and> element doesn’t have any attributes and accepts an arbitrary number
of conditions as nested elements - all nested elements of the condition task are
supported. This condition is true if all of its contained conditions are, conditions
will be evaluated in the order they have been specified in the build file.

The <and> condition has the same shortcut semantics as the Java && oper-
ator, as soon as one of the nested conditions is false, no other condition will be
evaluated.

or

The <or> element doesn’t have any attributes and accepts an arbitrary number
of conditions as nested elements - all nested elements of the condition task are
supported. This condition is true if at least one of its contained conditions is,
conditions will be evaluated in the order they have been specified in the build
file.

The <or> condition has the same shortcut semantics as the Java —— oper-
ator, as soon as one of the nested conditions is true, no other condition will be
evaluated.

available

This condition is identical to the Available task, all attributes and nested ele-
ments of that task are supported, the property and value attributes are redun-
dant and will be ignored.

uptodate

This condition is identical to the Uptodate task, all attributes and nested ele-
ments of that task are supported, the property and value attributes are redun-
dant and will be ignored.

os

Test whether the current operating system is of a given type. Each defined
attribute is tested and the result is true only if all the tests succeed.

Attribute Description Required
family The name of the operating system family to expect. No
name The name of the operating system to expect. No
arch The architecture of the operating system to expect. No
version The version of the operating system to expect. No

Supported values for the family attribute are:

• windows (for all versions of Microsoft Windows)

• dos (for all Microsoft DOS based operating systems including Microsoft
Windows and OS/2)

53 of 389

54 Ant Tasks

• mac (for all Apple Macintosh systems)

• unix (for all Unix and Unix-like operating systems)

• netware (for Novell NetWare)

• os/2 (for OS/2)

• win9x for Microsoft Windows 95 and 98

• z/os for z/OS and OS/390

equals

Tests whether the two given Strings are identical
Attribute Description Required
arg1 First string to test. Yes
arg2 Second string to test. Yes
casesensitive Perform a case sensitive comparision.

Default is true.
No

trim Trim whitespace from arguments before
comparing them. Default is false.

No

isset

Test whether a given property has been set in this project.
Attribute Description Required
property The name of the property to test. Yes

checksum

This condition is identical to the Checksum task, all attributes and nested el-
ements of that task are supported, the property and overwrite attributes are
redundant and will be ignored.

http

The http condition checks for a valid response from a web server of the specified
url. By default, HTTP responses errors of 400 or greater are viewed as invalid.

Attribute Description Required
url The full URL of the page to request.

The web server must return a status
code below the value of errorsBeginAt

Yes.

errorsBeginAt The lowest HTTP response code that
signals an error; by default ’400’; server
errors, not-authorized, not-found and
the like are detected

No

54 of 389

5.2 Core Tasks 55

socket

The socket condition checks for the existence of a TCP/IP listener at the spec-
ified host and port.

Attribute Description Required
server The DNS name or IP address of the

server.
Yes.

port The port number to connect to. Yes.

filesmatch

Test two files for matching. Nonexistence of either file results in ”false”. This
test does a byte for byte comparision, so test time scales with byte size. NB: if
the files are different sizes , one of them is missing or the filenames match the
answer is so obvious the detailed test is omitted.

Attribute Description Required
file1 First file to test Yes.
file2 Second file to test Yes.

contains

Tests whether a string contains another one.
Attribute Description Required
string The string to search in. Yes
substring The string to search for. Yes
casesensitive Perform a case sensitive comparision.

Default is true.
No

istrue

Tests whether a string equals any of the ant definitions of true, that is ”true”,”yes”,
or ”on”
Attribute Description Required
Attribute Description Required
value value to test Yes

<istrue value="${someproperty}"/>
<istrue value="false"/>

isfalse

Tests whether a string is not true, the negation of ¡istrue¿
Attribute Description Required
Attribute Description Required
value value to test Yes

<isfalse value="${someproperty}"/>
<isfalse value="false"/>

55 of 389

56 Ant Tasks

5.2.15 Copy

Description

Copies a file or FileSet to a new file or directory. By default, files are only copied
if the source file is newer than the destination file, or when the destination file
does not exist. However, you can explicitly overwrite files with the overwrite
attribute.

FileSets are used to select a set of files to copy. To use a <fileset>, the
todir attribute must be set.

Note: If you employ filters in your copy operation, you should limit the copy
to text files. Binary files will be corrupted by the copy operation. This applies
whether the filters are implicitly defined by the filter task or explicitly provided
to the copy operation as filtersets

56 of 389

5.2 Core Tasks 57

Parameters

Attribute Description Required
file The file to copy. Yes, unless a nested

<fileset> element is
used.

preservelastmodified Give the copied files the same last mod-
ified time as the original source files.
(Note: Ignored on Java 1.1)

No; defaults to false.

tofile
todir

The file to copy to.
The directory to copy to. With the file attribute,

either tofile or todir
can be used. With nested
<fileset> elements, if
the set of files is greater
than 1, or if only the dir
attribute is specified in the
<fileset>, or if the file
attribute is also specified,
then only todir is allowed.

overwrite Overwrite existing files even if the des-
tination files are newer.

No; defaults to false.

filtering Indicates whether token filtering using
the global build-file filters should take
place during the copy. Note: Nested
<filterset> elements will always be
used, even if this attribute is not speci-
fied, or its value is false (no, or off). No;
defaults to false. flatten Ignore the di-
rectory structure of the source files, and
copy all files into the directory specified
by the todir attribute. Note that you
can achieve the same effect by using a
flatten mapper.

No; defaults to false.

includeEmptyDirs Copy any empty directories included in
the FileSet(s).

No; defaults to true.

failonerror Log a warning message, but do not stop
the build, when the file to copy does not
exist. Only meaningful when copying a
single file.

No; defaults to true.

verbose Log the files that are being copied. No; defaults to false.
encoding The encoding to assume when filter-

copying the files. since Ant 1.5.
No - defaults to default
JVM encoding

Parameters specified as nested elements

fileset

57 of 389

58 Ant Tasks

FileSets are used to select sets of files to copy. To use a fileset, the todir
attribute must be set.

mapper

You can define filename transformations by using a nested mapper element.
The default mapper used by <copy> is the identity mapper.

filterset

FilterSets are used to replace tokens in files that are copied. To use a Fil-
terSet, use the nested <filterset> element.

filterchain

The Copy task supports nested FilterChains.
If <filterset> and <filterchain> elements are used inside the same <copy>

task, all <filterchain> elements are processed first followed by <filterset>
elements.

Examples

Copy a single file

<copy file="myfile.txt" tofile="mycopy.txt"/>

Copy a single file to a directory

<copy file="myfile.txt" todir="../some/other/dir"/>

Copy a directory to another directory

<copy todir="../new/dir">
<fileset dir="src_dir"/>

</copy>

Copy a set of files to a directory

<copy todir="../dest/dir">
<fileset dir="src_dir">

<exclude name="**/*.java"/>
</fileset>

</copy>

<copy todir="../dest/dir">
<fileset dir="src_dir" excludes="**/*.java"/>

</copy>

58 of 389

5.2 Core Tasks 59

Copy a set of files to a directory, appending .bak to the file name on
the fly

<copy todir="../backup/dir">
<fileset dir="src_dir"/>
<mapper type="glob" from="*" to="*.bak"/>

</copy>

Copy a set of files to a directory, replacing @TITLE@ with Foo Bar
in all files.

<copy todir="../backup/dir">
<fileset dir="src_dir"/>
<filterset>
<filter token="TITLE" value="Foo Bar"/>

</filterset>
</copy>

Unix Note: File permissions are not retained when files are copied; they end
up with the default UMASK permissions instead. This is caused by the lack of
any means to query or set file permissions in the current Java runtimes. If you
need a permission-preserving copy function, use <exec executable="cp" ...
> instead.

Windows Note: If you copy a file to a directory where that file already exists,
but with different casing, the copied file takes on the case of the original. The
workaround is to delete the file in the destination directory before you copy it.

5.2.16 Copydir

Deprecated

This task has been deprecated. Use the Copy task instead.

Description

Copies a directory tree from the source to the destination.
It is possible to refine the set of files that are being copied. This can be

done with the includes, includesfile, excludes, excludesfile and defaultexcludes
attributes. With the includes or includesfile attribute you specify the files you
want to have included by using patterns. The exclude or excludesfile attribute is
used to specify the files you want to have excluded. This is also done with pat-
terns. And finally with the defaultexcludes attribute, you can specify whether
you want to use default exclusions or not. See the section on directory based
tasks, on how the inclusion/exclusion of files works, and how to write patterns.

59 of 389

60 Ant Tasks

This task forms an implicit FileSet and supports all attributes of <fileset>
(dir becomes src) as well as the nested <include>, <exclude> and <patternset>
elements.

Parameters

Attribute Description Required
Attribute Description Required
src the directory to copy. Yes
dest the directory to copy to. Yes
includes comma- or space-separated list of pat-

terns of files that must be included. All
files are included when omitted.

No

includesfile the name of a file. Each line of this file
is taken to be an include pattern

No

excludes comma- or space-separated list of pat-
terns of files that must be excluded. No
files (except default excludes) are ex-
cluded when omitted.

No

excludesfile the name of a file. Each line of this file
is taken to be an exclude pattern

No

defaultexcludes indicates whether default excludes
should be used or not (”yes”/”no”).
Default excludes are used when omit-
ted.

No

filtering indicates whether token filtering should
take place during the copy

No

flatten ignore directory structure of source di-
rectory, copy all files into a single di-
rectory, specified by the dest attribute
(default is false).

No

forceoverwrite overwrite existing files even if the desti-
nation files are newer (default is false).

No

Examples

<copydir src="${src}/resources"
dest="${dist}"

/>

copies the directory src/resourcestodist.

<copydir src="${src}/resources"
dest="${dist}"
includes="**/*.java"
excludes="**/Test.java"

/>

60 of 389

5.2 Core Tasks 61

copies the directory src/resourcestodist recursively. All java files are copied,
except for files with the name Test.java.

<copydir src="${src}/resources"
dest="${dist}"
includes="**/*.java"
excludes="mypackage/test/**"/>

copies the directory src/resourcestodist recursively. All java files are copied,
except for the files under the mypackage/test directory.

5.2.17 Copyfile

Deprecated

This task has been deprecated. Use the Copy task instead.

Description

Copies a file from the source to the destination. The file is only copied if the
source file is newer than the destination file, or when the destination file does
not exist.

Parameters

Attribute Description Required
Attribute Description Required
src the filename of the file to copy. Yes
dest the filename of the file where to copy

to.
Yes

filtering indicates whether token filtering should
take place during the copy

No

forceoverwrite overwrite existing files even if the desti-
nation files are newer (default is false).

No

Examples

<copyfile src="test.java" dest="subdir/test.java"/>

<copyfile src="${src}/index.html" dest="${dist}/help/index.html"/>

5.2.18 Cvs

Description

Handles packages/modules retrieved from a CVS repository.
When doing automated builds, the get task should be preferred over the

checkout command, because of speed.

61 of 389

62 Ant Tasks

Parameters

Attribute Description Required
command the CVS command to execute. No, de-

fault ”
checkout”.

compression true or false - if set to true, this is the
same as compressionlevel=”3” No. De-
faults to

false.

compressionlevel A number between 1 and 9 (corre-
sponding to possible values for CVS’
-z#argument). Any other value is
treated as compression=”false”

No. Defaults to no
compression.

cvsRoot the CVSROOT variable. No
cvsRsh the CVS RSH variable. No
dest the directory where the checked out files

should be placed.
No, default is
project’s basedir.

package the package/module to check out. No
tag the tag of the package/module to check

out.
No

date Use the most recent revision no later
than the given date

No

quiet suppress informational messages. No, default ”false”
noexec report only, don’t change any files. No, default to

”false”
output the file to direct standard output from

the command.
No, default output
to ANT Log as
MSG INFO.

error the file to direct standard error from the
command.

No, default error
to ANT Log as
MSG WARN.

append whether to append output/error when
redirecting to a file.

No, default to
”false”.

port Port used by CVS to communicate with
the server.

No, default port
2401.

passfile Password file to read passwords from. No, default file
/.cvspass.

failonerror Stop the build process if the command
exits with a return code other than 0.
Defaults to false

No

Examples

<cvs cvsRoot=":pserver:anoncvs@cvs.apache.org:/home/cvspublic"
package="ant"
dest="${ws.dir}"

/>

62 of 389

5.2 Core Tasks 63

checks out the package/module ”ant” from the CVS repository pointed to by
the cvsRoot attribute, and stores the files in ”${ws.dir}”.

<cvs dest="${ws.dir}" command="update"/>

updates the package/module that has previously been checked out into ”${ws.dir}”.

<cvs command="-q diff -u -N" output="patch.txt"/>

silently (-q) creates a file called patch.txt which contains a unified (-u) diff which
includes new files added via ”cvs add” (-N) and can be used as input to patch.
The equivalent, using <commandline> elements, is:

<cvs output="patch">
<commandline>

<argument value="-q"/>
<argument value="diff"/>
<argument value="-u"/>
<argument value="-N"/>

</commandline>
</cvs>

or:

<cvs output="patch">
<commandline>

<argument line="-q diff -u -N"/>
</commandline>

</cvs>

You may include as many <commandline> elements as you like. Each will inherit
the failonerror, compression, and other ”global” parameters from the <cvs>
element.

<cvs command="update -A -d"/>

Updates from the head of repository ignoring sticky bits (-A) and creating any
new directories as necessary (-d).

Note: the text of the command is passed to cvs ”as-is” so any cvs options
should appear before the command, and any command options should appear
after the command as in the diff example above. See the cvs manual for details,
specifically the Guide to CVS commands

5.2.19 CvsChangeLog

Description

Generates an XML-formatted report file of the change logs recorded in a CVS
repository.

63 of 389

64 Ant Tasks

Parameters

Attribute Description Required
dir The directory from which to run the

CVS log command.
No; defaults to
${basedir}.

destfile The file in which to write the change
log report.

Yes

usersfile Property file that contains name-value
pairs mapping user IDs and names that
should be used in the report in place of
the user ID.

No

daysinpast Sets the number of days into the past
for which the change log information
should be retrieved.

No

start The earliest date from which change
logs are to be included in the report.

No

end The latest date to which change logs are
to be included in the report.

No

Parameters specified as nested elements

user

The nested <user> element allows you to specify a mapping between a user
ID as it appears on the CVS server and a name to include in the formatted
report. Anytime the specified user ID has made a change in the repository, the
<author> tag in the report file will include the name specified in displayname
rather than the user ID.

Attribute Description Required
displayname The name to be used in the CVS change

log report.
Yes

userid The userid of the person as it exists on
the CVS server.

Yes

Examples

<cvschangelog dir="dve/network"
destfile="changelog.xml"

/>

Generates a change log report for all the changes that have been made under
the dve/network directory. It writes these changes into the file changelog.xml.

<cvschangelog dir="dve/network"
destfile="changelog.xml"
daysinpast="10"

/>

64 of 389

5.2 Core Tasks 65

Generates a change log report for any changes that were made under the dve/network
directory in the past 10 days. It writes these changes into the file changelog.xml.

<cvschangelog dir="dve/network"
destfile="changelog.xml"
start="20 Feb 2002"
end="20 Mar 2002"

/>

Generates a change log report for any changes that were made between February
20, 2002 and March 20, 2002 under the dve/network directory. It writes these
changes into the file changelog.xml.

<cvschangelog dir="dve/network"
destfile="changelog.xml"
start="20 Feb 2002"

/>

Generates a change log report for any changes that were made after February
20, 2002 under the dve/network directory. It writes these changes into the file
changelog.xml.

<cvschangelog dir="dve/network"
destfile="changelog.xml"/>

<user displayname="Peter Donald" userid="donaldp"/>
</cvschangelog>

Generates a change log report for all the changes that were made under the
dve/network directory, substituting the name ”Peter Donald” in the <author>
tags anytime it encounters a change made by the user ID ”donaldp”. It writes
these changes into the file changelog.xml.

Generate Report
Ant includes a basic XSLT stylesheet that you can use to generate a HTML

report based on the xml output. The following example illustrates how to
generate a HTML report from the XML report.

<style in="changelog.xml"
out="changelog.html"
style="${ant.home}/etc/changelog.xsl">

<param name="title" expression="Ant ChangeLog"/>
<param name="module" expression="ant"/>
<param name="cvsweb" expression="http://cvs.apache.org/viewcvs/"/>

</style>

Sample Output

<changelog>
<entry>

<date>2002-03-06</date>

65 of 389

66 Ant Tasks

<time>12:00</time>
<author>Peter Donald</author>
<file>

<name>org/apache/myrmidon/build/AntlibDescriptorTask.java</name>
<revision>1.3</revision>
<prevrevision>1.2</prevrevision>

</file>
<msg><![CDATA[Use URLs directly rather than go via a FIle.

This allows temp[lates to be stored inside jar]]¿¡/msg¿

</entry>
</changelog>

5.2.20 CVSPass

Description

Adds entries to a .cvspass file. Adding entries to this file has the same affect as
a cvs login command.

Parameters

Attribute Description Required
cvsroot the CVS repository to add an entry for. Yes
password Password to be added to the password

file.
Yes

passfile Password file to add the entry to. No, default is
/.cvspass.

Examples

<cvspass cvsroot=":pserver:anoncvs@cvs.apache.org:/home/cvspublic"
password="anoncvs"

/>

Adds an entry into the /.cvspass password file.

5.2.21 CvsTagDiff

Description
Generates an XML-formatted report file of the changes between two tags or

dates recorded in a CVS repository.

66 of 389

5.2 Core Tasks 67

Parameters

Attribute Description Required
startTag The earliest tag from which diffs are to

be included in the report.
exactly one of the
two.

startDate The earliest date from which diffs are
to be included in the

report.

endTag The latest tag from which diffs are to
be included in the report.

exactly one of the
two.

endDate The latest date from which diffs are to
be included in the

report.

destfile The file in which to write the diff report. Yes
rootdir Root directory for the package, if differ-

ent from the package name.
No

Parameters inherited from the cvs task

Attribute Description Required
compression true, false, or the number 1–9 (corre-

sponding to possible values for CVS -z#
argument). Any other value is treated
as false

No. Defaults to no com-
pression. if passed true,
level 3 compression is as-
sumed.

cvsRoot the CVSROOT variable. No
cvsRsh the CVS RSH variable. No
package the package/module to analyze. Yes
quiet suppress informational messages. No, default ”false”
port Port used by CVS to communicate with

the server.
No, default port 2401.

passfile Password file to read passwords from. No, default file /.cvspass.
failonerror Stop the buildprocess if the command

exits with a returncode other than 0.
Defaults to false

No

Examples

<cvstagdiff cvsRoot=":pserver:anoncvs@cvs.apache.org:/home/cvspublic"
destfile="tagdiff.xml"
package="ant"
startTag="ANT_14"
endTag="ANT_141"

/>

Generates a tagdiff report for all the changes that have been made in the ant
module between the tags ANT 14 and ANT 141. It writes these changes into
the file tagdiff.xml.

<cvstagdiff

67 of 389

68 Ant Tasks

destfile="tagdiff.xml"
package="ant"
startDate="2002-01-01"
endDate="2002-31-01"

/>

Generates a tagdiff report for all the changes that have been made in the ant
module in january 2002. In this example cvsRoot has not been set. The current
cvsRoot will be used (assuming the build is started from a folder stored in cvs.
It writes these changes into the file tagdiff.xml.

<cvstagdiff
destfile="tagdiff.xml"
package="ant"
rootdir="apache/ant"
startDate="2002-01-01"
endDate="2002-31-01"

/>

Generates a tagdiff report for all the changes that have been made in the ant
module in january 2002, with rootdir indicating that the actual location of the
ant module in cvs is apache/ant rather than ant. In this example cvsRoot has
not been set. The current cvsRoot will be used (assuming the build is started
from a folder stored in cvs. It writes these changes into the file tagdiff.xml.

Generate Report

Ant includes a basic XSLT stylesheet that you can use to generate a HTML
report based on the xml output. The following example illustrates how to
generate a HTML report from the XML report.

<style in="tagdiff.xml"
out="tagdiff.html"
style="${ant.home}/etc/tagdiff.xsl">

<param name="title" expression="Ant Diff"/>
<param name="module" expression="ant"/>
<param name="cvsweb" expression="http://cvs.apache.org/viewcvs/"/>

</style>

Sample Output

<?xml version="1.0" encoding="UTF-8"?>
<tagdiff startTag="ANT_14" endTag="ANT_141">

<entry>
<file>

<name>src/main/org/apache/tools/ant/DirectoryScanner.java</name>
<revision>1.15.2.1</revision>
<prevrevision>1.15</prevrevision>

68 of 389

5.2 Core Tasks 69

</file>
</entry>

</tagdiff>

5.2.22 Delete

Description

Deletes a single file, a specified directory and all its files and subdirectories, or
a set of files specified by one or more FileSets. When specifying a set of files,
empty directories are not removed by default. To remove empty directories, use
the includeEmptyDirs attribute.

If you use this task to delete temporary files created by editors and it doesn’t
seem to work, read up on the default exclusion set in Directory-based Tasks,
and see the defaultexcludes attribute below.

Parameters

Attribute Description Required
Attribute Description Required

file
dir

The file to delete, specified as either
the simple filename (if the file ex-
ists in the current base directory), a
relative-path filename, or a full-path
filename.
The directory to delete, including all
its files and subdirectories. Note:
dir is not used to specify a directory
name for file; file and dir are inde-
pendent of each other. WARNING:
Do not set dir to ”.”, ”${basedir}”,
or the full-pathname equivalent un-
less you truly intend to recursively
remove the entire contents of the
current base directory (and the base
directory itself, if different from the
current working directory).

At least one of
the two, unless a
<fileset> is spec-
ified.

69 of 389

70 Ant Tasks

Attribute Description Required
verbose Show the name of each deleted file

(”true”/”false”). Default is ”false”
when omitted.

No

quiet If the specified file or directory does
not exist, do not display a diagnostic
message (unless Ant has been invoked
with the ?verbose or ?debug switches)
or modify the exit status to reflect an
error. When set to ”true”, if a file or
directory cannot be deleted, no error is
reported. This setting emulates the -f
option to the Unix rm command. De-
fault is ”false”. Setting this to ”true”
implies setting failonerror to ”false”.

No

failonerror Controls whether an error (such as a
failure to delete a file) stops the build or
is merely reported to the screen. Only
relevant if quiet is ”false”. Default is
”true”.

No

includeEmptyDirs Set to ”true” to delete empty directories
when using filesets. Default is ”false”.

No

includes Deprecated. Use ¡fileset¿. Comma- or
space-separated list of patterns of files
that must be deleted. All files are rela-
tive to the directory specified in dir.

No

includesfile Deprecated. Use ¡fileset¿. The name of
a file. Each line of this file is taken to
be an include pattern

No

excludes Deprecated. Use ¡fileset¿. Comma- or
space-separated list of patterns of files
that must be excluded from the deletion
list. All files are relative to the direc-
tory specified in dir. No files (except de-
fault excludes) are excluded when omit-
ted.

No

70 of 389

5.2 Core Tasks 71

Attribute Description Required
excludesfile Deprecated. Use ¡fileset¿. The name of

a file. Each line of this file is taken to
be an exclude pattern

No

defaultexcludes Indicates whether default excludes
should be used or not (”yes”/”no”).
Default excludes are used when omit-
ted.

No

Examples

<delete file="/lib/ant.jar"/>

deletes the file /lib/ant.jar.

<delete dir="lib"/>

deletes the lib directory, including all files and subdirectories of lib.

<delete>
<fileset dir="." includes="**/*.bak"/>

</delete>

deletes all files with the extension .bak from the current directory and any
subdirectories.

<delete includeEmptyDirs="true">
<fileset dir="build"/>

</delete>

deletes all files and subdirectories of build, including build itself.

5.2.23 Deltree

Deprecated

This task has been deprecated. Use the Delete task instead.

Description

Deletes a directory with all its files and subdirectories.

Parameters

Attribute Description Required
dir the directory to delete. Yes

71 of 389

72 Ant Tasks

Examples

<deltree dir="dist"/>

deletes the directory dist, including its files and subdirectories.

<deltree dir="${dist}"/>

deletes the directory ${dist}, including its files and subdirectories.

5.2.24 Dependset

A task to manage arbitrary dependencies between files.

Description

The dependset task compares a set of source files with a set of target files. If
any of the source files is more recent than any of the target files, all of the target
files are removed.

Source files and target files are specified via nested FileSets and/or nested
FileLists. Arbitrarily many source and target filesets/filelists may be specified,
but at least one filelist/fileset is required for both sources and targets.

Use a FileSet when you want to use wildcard include or exclude patterns
and don’t care about missing files. Use a FileList when you want to consider
the non-existence of a file as if it were out of date. If there are any non-existing
files in any source or target FileList, all target files will be removed.

DependSet is useful to capture dependencies that are not or cannot be deter-
mined algorithmically. For example, the ¡style¿ task only compares the source
XML file and XSLT stylesheet against the target file to determined whether to
restyle the source. Using dependset you can extend this dependency checking
to include a DTD or XSD file as well as other stylesheets imported by the main
stylesheet.

Parameters

(none)

Parameters Specified as Nested Elements

srcfileset

The nested srcfileset element specifies a FileSet. All files included in this
fileset will be compared against all files included in all of the targetfileset filesets
and targetfilelist filelists. Multiple srcfileset filesets may be specified.

srcfilelist

The nested srcfilelist element specifies a FileList. All files included in this
filelist will be compared against all files included in all of the targetfileset filesets
and targetfilelist filelists. Multiple srcfilelist filelists may be specified.

72 of 389

5.2 Core Tasks 73

targetfileset

The nested targetfileset element specifies a FileSet. All files included in this
fileset will be compared against all files included in all of the srcfileset filesets
and sourcefilelist filelists, and if any are older, they are all deleted.

targetfilelist

The nested targetfilelist element specifies a FileList. All files included in this
filelist will be compared against all files included in all of the srcfileset filesets
and sourcefilelist filelists, and if any are older, they are all deleted.

Examples

<dependset>
<srcfilelist

dir = "${dtd.dir}"
files = "paper.dtd,common.dtd"/>

<srcfilelist
dir = "${xsl.dir}"
files = "common.xsl"/>

<srcfilelist
dir = "${basedir}"
files = "build.xml"/>

<targetfileset
dir = "${output.dir}"
includes = "**/*.html"/>

</dependset>

In this example derived HTML files in the ${output.dir} directory will be re-
moved if any are out-of-date with respect to:

1. the DTD of their source XML files

2. a common DTD (imported by the main DTD)

3. a subordinate XSLT stylesheet (imported by the main stylesheet), or

4. the buildfile

If any of the source files in the above example does not exist, all target files
will also be removed. To ignore missing source files instead, use filesets instead
of filelists for the source files.

5.2.25 Dirname

Description

Task to determine the directory path of a specified file.

73 of 389

74 Ant Tasks

When this task executes, it will set the specified property to the value of the
specified file up to, but not including, the last path element. If the specified file
is a path that ends in a filename, the filename will be dropped. If the specified
file is just a filename, the directory will be the current directory.

Parameters

Attribute Description Required
file The path to take the dirname of. Yes
property The name of the property to set. Yes

Examples

<dirname property="antfile.dir" file="${ant.file}"/>

will set antfile.dir to the directory path for ${ant.file}.

<dirname property="foo.dirname" file="foo.txt"/>

will set foo.dirname to the project’s basedir.

5.2.26 Ear

Description

An extension of the Jar task with special treatment for files that should end up
in an Enterprise Application archive.

(The Ear task is a shortcut for specifying the particular layout of a EAR file.
The same thing can be accomplished by using the prefix and fullpath attributes
of zipfilesets in a Zip or Jar task.)

The extended zipfileset element from the zip task (with attributes prefix,
fullpath, and src) is available in the Ear task.

74 of 389

5.2 Core Tasks 75

Parameters

Attribute Description Required
destfile the EAR file to create. Yes
appxml The deployment descriptor to use

(META-INF/application.xml).
Yes, unless update
is set to true

basedir the directory from which to jar the files. No
compress Not only store data but also compress

them, defaults to true
No

encoding The character encoding to use for file-
names inside the archive. Defaults
to UTF8. It is not recommended to
change this value as the created archive
will most likely be unreadable for Java
otherwise.

No

filesonly Store only file entries, defaults to false No
includes comma- or space-separated list of pat-

terns of files that must be included. All
files are included when omitted.

No

includesfile the name of a file. Each line of this file
is taken to be an include pattern

No

excludes comma- or space-separated list of pat-
terns of files that must be excluded. No
files (except default excludes) are ex-
cluded when omitted.

No

excludesfile the name of a file. Each line of this file
is taken to be an exclude pattern

No

defaultexcludes indicates whether default excludes
should be used or not (”yes”/”no”).
Default excludes are used when omit-
ted.

No

manifest the manifest file to use. No
update indicates whether to update or over-

write the destination file if it already
exists. Default is ”false”.

No

duplicate behavior when a duplicate file is found.
Valid values are ”add”, ”preserve”, and
”fail”. The default value is ”add”.

No

Nested elements

metainf

The nested metainf element specifies a FileSet. All files included in this
fileset will end up in the META-INF directory of the ear file. If this fileset
includes a file named MANIFEST.MF, the file is ignored and you will get a

75 of 389

76 Ant Tasks

warning.

Example

<ear destfile="${build.dir}/myapp.ear"
appxml="${src.dir}/metadata/application.xml">

<fileset dir="${build.dir}" includes="*.jar,*.war"/>
</ear>

5.2.27 Echo

Description

Echoes a message to the current loggers and listeners which means System.out
unless overridden. A level can be specified, which controls at what logging level
the message is filtered at.

The task can also echo to a file, in which case the option to append rather
than overwrite the file is available, and the level option is ignored

Parameters

Attribute Description Required
message the message to echo. Yes, unless data is in-

cluded in a character sec-
tion within this element.

file the file to write the message to. No
append Append to an existing file? No - default is false.
level Control the level at which this message

is reported. One of ”error”, ”warning”,
”info”, ”verbose”, ”debug”

No - default is ”warning”.

Examples

<echo message="Hello, world"/>

<echo>This is a longer message stretching over
two lines.
</echo>

<echo>
This is a longer message stretching over
three lines; the first line is a blank
</echo>

As XML parsers are wont to do, the first newline in the text element has
been included in the text.

76 of 389

5.2 Core Tasks 77

<echo message="Deleting drive C:" level="debug"/>

A message which only appears in -debug mode.

<echo level="error">
Imminent failure in the antimatter containment facility.
Please withdraw to safe location at least 50km away.
</echo>

A message which appears even in -quiet mode.

<echo file="runner.csh" append="false">#\!/bin/tcsh
java-1.3.1 -mx1024m ${project.entrypoint} $$*

Generate a shell script by echoing to a file. Note the use of a double $ symbol
to stop Ant filtering out the single $ during variable expansion

5.2.28 Exec

Description

Executes a system command. When the os attribute is specified, then the
command is only executed when Ant is run on one of the specified operating
systems.

Cygwin Users

In general the <exec> task will not understand paths such as /bin/sh for the
executable parameter. This is because the Java VM in which Ant is running is
a Windows executable and is not aware of Cygwin conventions.

77 of 389

78 Ant Tasks

Parameters

Attribute Description Required
command the command to execute with all com-

mand line arguments. deprecated, use
executable and nested ¡arg¿ elements
instead.

Exactly one of the two.

executable the command to execute without any
command line

arguments.

dir the directory in which the command
should be executed.

No

os list of Operating Systems on which the
command may be executed. If the cur-
rent OS’s name is contained in this
list, the command will be executed.
The OS’s name is determined by the
Java Virtual machine and is set in the
”os.name” system property.

No

output the file to which the output of the com-
mand should be redirected.

No

append whether output should be appended to
or overwrite an existing file. Defaults
to false.

No

outputproperty the name of a property in which the
output of the command should be
stored.

No

resultproperty the name of a property in which the
return code of the command should
be stored. Only of interest if failon-
error=false

No

timeout Stop the command if it doesn’t finish
within the specified time (given in mil-
liseconds).

No

failonerror Stop the buildprocess if the command
exits with a returncode other than 0.
Defaults to false

No

failifexecutionfails Stop the build if we can’t start the pro-
gram. Defaults to true.

No

newenvironment Do not propagate old environment
when new environment variables are
specified.

No, default is false

vmlauncher Run command using the Java VM’s ex-
ecution facilities where available. If set
to false the underlying OS’s shell, either
directly or through the antRun scripts,
will be used. Under some operating sys-
tems, this gives access to facilities not
normally available through the VM in-
cluding, under Windows, being able to
execute scripts, rather than their asso-
ciated interpreter. If you want to spec-
ify the name of the executable as a rel-
ative path to the directory given by the
dir attribute, it may become necessary
to set vmlauncher to false as well.

No, default is true

78 of 389

5.2 Core Tasks 79

Examples

<exec dir="${src}" executable="cmd.exe" os="Windows 2000" output="dir.txt">
<arg line="/c dir"/>

</exec>

Parameters specified as nested elements

arg

Command line arguments should be specified as nested ¡arg¿ elements. See
Command line arguments.

env

It is possible to specify environment variables to pass to the system command
via nested <env> elements.

Attribute Description Required
key The name of the environment variable. Yes

value
path
hline file

The literal value for the environment
variable.
The value for a PATH like environ-
ment variable. You can use ; or : as
separators and Ant will convert it to
the platform’s local conventions.
The value for the environment vari-
able. Will be replaced by the abso-
lute filename of the file by Ant.

Exactly one of these.

Errors and return codes

By default the return code of a <exec> is ignored; when you set failonerror=”true”
then any non zero response is treated as an error. Alternatively, you can set
resultproperty to the name of a property and have it assigned to the result code
(barring immutability, of course).

If the attempt to start the program fails with an OS dependent error code,
then <exec> halts the build unless failifexecutionfails is set. You can use that
to run a program if it exists, but otherwise do nothing.

What do those error codes mean? Well, they are OS dependent. On Win-
dows boxes you have to look in include
error.h in your windows compiler or wine files; error code 2 means ’no such
program’, which usually means it is not on the path. Any time you see such an
error from any ant task, it is usually not an ant bug, but some configuration
problem on your machine.

Examples

<exec executable="emacs">

79 of 389

80 Ant Tasks

<env key="DISPLAY" value=":1.0"/>
</exec>

starts emacs on display 1 of the X Window System.

<exec ... >
<env key="PATH" path="${java.library.path}:${basedir}/bin"/>

</exec>

adds ${basedir}/bin to the PATH of the system command.
Note: Although it may work for you to specify arguments using a simple

arg-element and separate them by spaces it may fail if you switch to a newer
version of the JDK. JDK ¡ 1.2 will pass these as separate arguments to the
program you are calling, JDK ¿= 1.2 will pass them as a single argument and
cause most calls to fail.

Note2: If you are using Ant on Windows and a new DOS-Window pops up
for every command which is executed this may be a problem of the JDK you
are using. This problem may occur with all JDK’s ¡ 1.2.

Timeouts: If a timeout is specified, when it is reached the sub process is
killed and a message printed to the log. The return value of the execution will
be ”-1”, which will halt the build if failonerror=true, but be ignored otherwise.

5.2.29 Fail

Description
Exits the current build (just throwing a BuildException), optionally printing

additional information.
The message of the Exception can be set via the message attribute or char-

acter data nested into the element.

Parameters

Attribute Description Required
Attribute Description Required
message A message giving further information

on why the build exited
No

if Only fail if a property of the given name
exists in the current project

No

unless Only fail if a property of the given name
doesn’t exist in the current project

No

Examples

<fail/>

will exit the current build with no further information given.

80 of 389

5.2 Core Tasks 81

BUILD FAILED

build.xml:4: No message

<fail message="Something wrong here."/>

will exit the current build and print something like the following to wherever
your output goes:

BUILD FAILED

build.xml:4: Something wrong here.

<fail>Something wrong here.</fail>

will give the same result as above.

5.2.30 Filter

Description

Sets a token filter for this project or read multiple token filter from an input
file and sets these as filters. Token filters are used by all tasks that perform file
copying operations through the Project commodity methods.

Note 1: the token string must not contain the separators chars (@).
Note 2: Either token and value attributes must be provided, or only the

filtersfile attribute.

Parameters

Attribute Description Required
Attribute Description Required
token the token string without @ Yes*
value the string that should be put to replace

the token when the file is copied
Yes*

filtersfile The file from which the filters must be
read. This file must be a formatted as
a property file.

Yes*

* see notes 1 and 2 above parameters table.

Examples

<filter token="year" value="2000"/>
<copy todir="${dest.dir}" filtering="true">

<fileset dir="${src.dir}"/>
</copy>

will copy recursively all the files from the src.dir directory into the dest.dir
directory replacing all the occurrences of the string @year@ with 2000.

81 of 389

82 Ant Tasks

<filter filtersfile="deploy_env.properties"/>

will read all property entries from the deploy env.properties file and set these
as filters.

5.2.31 FixCRLF

Description

Adjusts a text file to local conventions.
The set of files to be adjusted can be refined with the includes, includes-

file, excludes, excludesfile and defaultexcludes attributes. Patterns provided
through the includes or includesfile attributes specify files to be included. Pat-
terns provided through the exclude or excludesfile attribute specify files to be
excluded. Additionally, default exclusions can be specified with the defaultex-
cludes attribute. See the section on directory based tasks, for details of file
inclusion/exclusion patterns and their usage.

This task forms an implicit FileSet and supports all attributes of <fileset>
(dir becomes srcdir) as well as the nested <include>, <exclude> and <patternset>
elements.

The output file is only written if it is a new file, or if it differs from the
existing file. This prevents spurious rebuilds based on unchanged files which
have been regenerated by this task.

Parameters

Attribute Description Required
Attribute Description Required
srcDir Where to find the files to be fixed up. Yes
destDir Where to place the corrected files. Defaults to srcDir

(replacing the original file)
No

includes comma- or space-separated list of patterns of files
that must be included. All files are included when
omitted.

No

includesfile the name of a file. Each line of this file is taken to
be an include pattern

No

excludes comma- or space-separated list of patterns of files
that must be excluded. No files (except default ex-
cludes) are excluded when omitted.

No

excludesfile the name of a file. Each line of this file is taken to
be an exclude pattern

No

defaultexcludes indicates whether default excludes should be used or
not (”yes”/”no”). Default excludes are used when
omitted.

No

82 of 389

5.2 Core Tasks 83

Attribute Description Required
eol Specifies how end-of-line (EOL) characters are to be

handled. The EOL characters are CR, LF and the
pair CRLF. Valid values for this property are:

• asis: leave EOL characters alone

• cr: convert all EOLs to a single CR

• lf: convert all EOLs to a single LF

• crlf: convert all EOLs to the pair CRLF

Default is based on the platform on which you are
running this task. For Unix platforms, the default is
”lf”. For DOS based systems (including Windows),
the default is ”crlf”. For Mac OS, the default is ”cr”.
This is the preferred method for specifying EOL. The
”cr” attribute (see below) is now deprecated.
N.B.: One special case is recognized. The three char-
acters CR-CR-LF are regarded as a single EOL. Un-
less this property is specified as ”asis”, this sequence
will be converted into the specified EOL type.

No

cr Deprecated. Specifies how CR characters are to be
handled at end-of-line (EOL). Valid values for this
property are:

• asis: leave EOL characters alone.

• add: add a CR before any single LF characters.
The intent is to convert all EOLs to the pair
CRLF.

• remove: remove all CRs from the file. The
intent is to convert all EOLs to a single LF.

Default is based on the platform on which you are
running this task. For Unix platforms, the default is
”remove”. For DOS based systems (including Win-
dows), the default is ”add”.
N.B.: One special case is recognized. The three char-
acters CR-CR-LF are regarded as a single EOL. Un-
less this property is specified as ”asis”, this sequence
will be converted into the specified EOL type.

No

83 of 389

84 Ant Tasks

Attribute Description Required
javafiles Used only in association with the ”tab” attribute

(see below), this boolean attribute indicates whether
the fileset is a set of java source files (”yes”/”no”).
Defaults to ”no”. See notes in section on ”tab”.

No

tab Specifies how tab characters are to be handled. Valid
values for this property are:

• add: convert sequences of spaces which span a
tab stop to tabs

• asis: leave tab and space characters alone

• remove: convert tabs to spaces

Default for this parameter is ”asis”.
N.B.: When the attribute ”javafiles” (see above)
is ”true”, literal TAB characters occurring within
Java string or character constants are never modi-
fied. This functionality also requires the recognition
of Java-style comments.
N.B.: There is an incompatibility between this and
the previous version in the handling of white space
at the end of lines. This version does not remove
trailing whitespace on lines.

No

tablength TAB character interval. Valid values are between 2
and 80 inclusive. The default for this parameter is
8.

No

eof Specifies how DOS end of file (control-Z) characters
are to be handled. Valid values for this property are:

• add: ensure that there is an EOF character at
the end of the file

• asis: leave EOF characters alone

• remove: remove any EOF character found at
the end

Default is based on the platform on which you are
running this task. For Unix platforms, the default
is remove. For DOS based systems (including Win-
dows), the default is asis.

No

84 of 389

5.2 Core Tasks 85

Attribute Description Required
encoding The encoding of the files No - defaults to

default JVM en-
coding

Examples

<fixcrlf srcdir="${src}"
eol="lf"
eof="remove"
includes="**/*.sh"

/>

Replaces EOLs with LF characters and removes eof characters from the shell
scripts. Tabs and spaces are left as is.

<fixcrlf srcdir="${src}"
eol="crlf"
includes="**/*.bat"

/>

Replaces all EOLs with cr-lf pairs in the batch files. Tabs and spaces are left
as is. EOF characters are left alone if run on DOS systems, and are removed if
run on Unix systems.

<fixcrlf srcdir="${src}"
tab="add"
includes="**/Makefile"

/>

Sets EOLs according to local OS conventions, and converts sequences of spaces
and tabs to the minimal set of spaces and tabs which will maintain spacing
within the line. Tabs are set at 8 character intervals. EOF characters are left
alone if run on DOS systems, and are removed if run on Unix systems. Many
versions of make require tabs prior to commands.

<fixcrlf srcdir="${src}"
tab="remove"
tablength="3"
eol="lf"
javafiles="yes"
includes="**/*.java"

/>

Converts all EOLs in the included java source files to a single LF. Replace
all TAB characters except those in string or character constants with spaces,
assuming a tab width of 3. If run on a unix system, any CTRL-Z EOF characters
at the end of the file are removed. On DOS/Windows, any such EOF characters
will be left untouched.

85 of 389

86 Ant Tasks

<fixcrlf srcdir="${src}"
tab="remove"
includes="**/README*"

/>

Sets EOLs according to local OS conventions, and converts all tabs to spaces,
assuming a tab width of 8. EOF characters are left alone if run on DOS systems,
and are removed if run on Unix systems. You never know what editor a user
will use to browse README’s.

5.2.32 GenKey

Description

Generates a key in keystore. This task needs Java1.2 or later

Parameters

Attribute Description Required
alias the alias to add under Yes.
storepass password for keystore integrity. Must be at least 6

characters long
Yes.

keystore keystore location No
storetype keystore type No
keypass password for private key (if different) No
sigalg the algorithm to use in signing No
keyalg the method to use when generating name-value pair No
verbose (true — false) verbose output when signing No
dname The distinguished name for entity Yes if dname ele-

ment
unspecified

validity (integer) indicates how many days certificate is valid No
keysize (integer) indicates the size of key generated No

Alternatively you can specify the distinguished name by creating a sub-
element named dname and populating it with param elements that have a name
and a value. When using the subelement it is automatically encoded properly
and commas (”,”) are replaced with ” ”.

The following two examples are identical:

Examples

<genkey alias="apache-group" storepass="secret"
dname="CN=Ant Group, OU=Jakarta Division, O=Apache.org, C=US"/>

<genkey alias="apache-group" storepass="secret" >
<dname>

<param name="CN" value="Ant Group"/>
<param name="OU" value="Jakarta Division"/>

86 of 389

5.2 Core Tasks 87

<param name="O" value="Apache.Org"/>
<param name="C" value="US"/>

</dname>
</genkey>

5.2.33 Get

Description
Gets a file from a URL. When the verbose option is ”on”, this task displays

a ’.’ for every 100 Kb retrieved. Any URL schema supported by the runtime is
valid here, including http:, ftp: and jar:; https: is only valid if the appropriate
support is added to the pre-1.4 Java runtimes.

This task should be preferred above the CVS task when fetching remote
content. CVS is significantly slower than loading a compressed archive compared
to http/ftp.

The usetimestamp option enables you to control downloads so that the re-
mote file is only fetched if newer than the local copy. If there is no local copy,
the download always takes place. When a file is downloaded, the timestamp of
the downloaded file is set to the remote timestamp, if the JVM is Java1.2 or
later. NB: This timestamp facility only works on downloads using the HTTP
protocol.

A username and password can be specified, in which case basic ’slightly
encoded plain text’ authentication is used. This is only a secure authentication
mechanism over an HTTPS link.

If you need to go through a firewall, use ¡setproxy¿ to set up the proxy first.

Parameters

Attribute Description Required
src the URL from which to retrieve a file. Yes
dest the file where to store the retrieved file. Yes
verbose show verbose progress information (”on”/”off”). No; default

”false”
ignoreerrors Log errors but don’t treat as fatal. No; default

”false”
usetimestamp conditionally download a file based on the timestamp

of the local copy. HTTP only
No; default
”false”

username username for ’BASIC’ http authentication if password is
set

password password: required if user-
name is set

Examples

<get src="http://ant.apache.org/" dest="help/index.html"/>

Gets the index page of http://ant.apache.org/, and stores it in the file help/index.html.

87 of 389

88 Ant Tasks

<get src="http://jakarta.apache.org/builds/tomcat/nightly/ant.zip"
dest="optional.jar"
verbose="true"
usetimestamp="true"/>

Gets the nightly ant build from the tomcat distribution, if the local copy is
missing or out of date. Uses the verbose option for progress information.

<get src="https://insecure-bank.org/statement/user=1214"
dest="statement.html"
username="1214";
password="secret"/>

Fetches some file from a server with access control. Because https is being used
the fact that basic auth sends passwords in plaintext is moot.

5.2.34 GUnzip/BUnzip2

Description

Expands a file packed using GZip or BZip2.
If dest is a directory the name of the destination file is the same as src (with

the ”.gz” or ”.bz2” extension removed if present). If dest is omitted, the parent
dir of src is taken. The file is only expanded if the source file is newer than the
destination file, or when the destination file does not exist.

Parameters

Attribute Description Required
src the file to expand. Yes
dest the destination file or directory. No

Examples

<gunzip src="test.tar.gz"/>

expands test.tar.gz to test.tar

<bunzip2 src="test.tar.bz2"/>

expands test.tar.bz2 to test.tar

<gunzip src="test.tar.gz" dest="test2.tar"/>

expands test.tar.gz to test2.tar

<gunzip src="test.tar.gz" dest="subdir"/>

expands test.tar.gz to subdir/test.tar (assuming subdir is a directory).

88 of 389

5.2 Core Tasks 89

5.2.35 GZip/BZip2

Description

Packs a file using the GZip or BZip2 algorithm. The output file is only generated
if it doesn’t exist or the source file is newer.

Parameters

Attribute Description Required
src the file to gzip/bzip. Yes
zipfile the destination file. Yes

Examples

<gzip src="test.tar" zipfile="test.tar.gz"/>

<bzip2 src="test.tar" zipfile="test.tar.bz2"/>

5.2.36 Input

Description

Allows user interaction during the build process by prompting for input. To do
so, it uses the configured InputHandler.

The prompt can be set via the message attribute or as character data nested
into the element.

Optionally a set of valid input arguments can be defined via the validargs
attribute. Input task will no accept value that don’t match one of the predefined.

Optionally a property can be created from the value entered by the user.
This property can then be used during the following build run. Input behaves
according to property task which means that existing properties cannot be over-
riden.

Parameters

Attribute Description Required
message the Message which gets displayed to the user during

the build run.
No

validargs comma separated String containing valid input ar-
guments. If set, input task will reject any input not
defined here. Validargs are compared case sensitive.
If you want ’a’ and ’A’ to be accepted you will need
to define both arguments within validargs.

No

addproperty the name of a property to be created from input.
Behaviour is equal to property task which means that
existing properties cannot be overriden.

No

89 of 389

90 Ant Tasks

Examples

<input/>

Will pause the build run until return key is pressed when using the default
InputHandler, the concrete behavior is defined by the InputHandler implemen-
tation you use.

<input>Press Return key to continue...</input>

Will display the message ”Press Return key to continue...” and pause the build
run until return key is pressed (again, the concrete behavior is implementation
dependent).

<input
message="Press Return key to continue..."

/>

Will display the message ”Press Return key to continue...” and pause the build
run until return key is pressed (see above).

<input
message="All data is going to be deleted from DB continue (y/n)?"
validargs="y,n"
addproperty="do.delete"

/>
<condition property="do.abort">

<equals arg1="n" arg2="${do.delete}"/>
</condition>
<fail if="do.abort">Build aborted by user.</fail>

Will display the message ”All data is going to be deleted from DB continue
(y/n)?” and require ’y’ to continue build or ’n’ to exit build with following
message ”Build aborted by user.”.

<input
message="Please enter db-username:"
addproperty="db.user"

/>

Will display the message ”Please enter db-username:” and set the property
db.user to the value entered by the user.

5.2.37 Jar

Description

Jars a set of files.
The basedir attribute is the reference directory from where to jar.
Note that file permissions will not be stored in the resulting jarfile.

90 of 389

5.2 Core Tasks 91

It is possible to refine the set of files that are being jarred. This can be
done with the includes, includesfile, excludes, excludesfile and defaultexcludes
attributes. With the includes or includesfile attribute you specify the files you
want to have included by using patterns. The exclude or excludesfile attribute is
used to specify the files you want to have excluded. This is also done with pat-
terns. And finally with the defaultexcludes attribute, you can specify whether
you want to use default exclusions or not. See the section on directory based
tasks, on how the inclusion/exclusion of files works, and how to write patterns.

This task forms an implicit FileSet and supports all attributes of <fileset>
(dir becomes basedir) as well as the nested <include>, <exclude> and <patternset>
elements.

You can also use nested file sets for more flexibility, and specify multiple
ones to merge together different trees of files into one JAR. The extended fileset
and groupfileset attributes from the zip task are also available in the jar task.
See the Zip task for more details and examples.

If the manifest is omitted, a simple one will be supplied by Ant.
The update parameter controls what happens if the JAR file already exists.

When set to yes, the JAR file is updated with the files specified. When set to
no (the default) the JAR file is overwritten. An example use of this is provided
in the Zip task documentation. Please note that ZIP files store file modification
times with a granularity of two seconds. If a file is less than two seconds newer
than the entry in the archive, Ant will not consider it newer.

(The Jar task is a shortcut for specifying the manifest file of a JAR file. The
same thing can be accomplished by using the fullpath attribute of a zipfileset in
a Zip task. The one difference is that if the manifest attribute is not specified,
the Jar task will include an empty one for you.)

Manifests are processed by the Jar task according to the Jar file specification.
Note in particular that this may result in manifest lines greater than 72 bytes
being wrapped and continued on the next line.

Parameters

Attribute Description Required
Attribute Description Required
destfile the JAR file to create. Yes
basedir the directory from which to jar the files. No
compress Not only store data but also compress them, defaults to

true
No

encoding The character encoding to use for filenames inside the
archive. Defaults to UTF8. It is not recommended to
change this value as the created archive will most likely
be unreadable for Java otherwise.

No

91 of 389

92 Ant Tasks

Attribute Description Required
filesonly Store only file entries, defaults to false No
includes comma- or space-separated list of patterns of files that

must be included. All files are included when omitted.
No

includesfile the name of a file. Each line of this file is taken to be
an include pattern

No

excludes comma- or space-separated list of patterns of files that
must be excluded. No files (except default excludes) are
excluded when omitted.

No

excludesfile the name of a file. Each line of this file is taken to be
an exclude pattern

No

defaultexcludes indicates whether default excludes should be used or not
(”yes”/”no”). Default excludes are used when omitted.

No

manifest the manifest file to use. This can be either the lo-
cation of a manifest, or the name of a jar added
through a fileset. If its the name of an added jar, the
task expects the manifest to be in the jar at META-
INF/MANIFEST.MF

No

update indicates whether to update or overwrite the destination
file if it already exists. Default is ”false”.

No

whenempty behavior when no files match. Valid values are ”fail”,
”skip”, and ”create”. Default is ”skip”.

No

duplicate behavior when a duplicate file is found. Valid values
are ”add”, ”preserve”, and ”fail”. The default value is
”add”.

No

index whether to create an index list to speed up classloading.
This is a JDK 1.3+ specific feature. Defaults to false.

No

manifestencoding The encoding used to read the JAR manifest, when a
manifest file is specified.

No, defaults to
the platform en-
coding.

Nested elements

metainf

The nested metainf element specifies a FileSet. All files included in this
fileset will end up in the META-INF directory of the jar file. If this fileset
includes a file named MANIFEST.MF, the file is ignored and you will get a
warning.

manifest

The manifest nested element allows the manifest for the Jar file to be pro-
vided inline in the build file rather than in an external file. This element is
identical to the manifest task, but the file and mode attributes must be omit-
ted.

92 of 389

5.2 Core Tasks 93

If both an inline manifest and an external file are both specified, the mani-
fests are merged.

When using inline manifests, the Jar task will check whether the build file
is more recent that the Jar file when deciding whether to rebuild the Jar. This
will not take into account property file changes which may affect the resulting
Jar.

Examples

<jar destfile="${dist}/lib/app.jar" basedir="${build}/classes"/>

jars all files in the build/classesdirectoryintoafilecalledapp.jarinthedist/lib di-
rectory.

<jar destfile="${dist}/lib/app.jar"
basedir="${build}/classes"
excludes="**/Test.class"

/>

jars all files in the build/classesdirectoryintoafilecalledapp.jarinthedist/lib di-
rectory. Files with the name Test.class are excluded.

<jar destfile="${dist}/lib/app.jar"
basedir="${build}/classes"
includes="mypackage/test/**"
excludes="**/Test.class"

/>

jars all files in the build/classesdirectoryintoafilecalledapp.jarinthedist/lib di-
rectory. Only files under the directory mypackage/test are used, and files with
the name Test.class are excluded.

<jar destfile="${dist}/lib/app.jar">
<fileset dir="${build}/classes"

excludes="**/Test.class"
/>
<fileset dir="${src}/resources"/>

</jar>

jars all files in the build/classesdirectoryandalsointhe${src}/resourcesdirectorytogetherintoafilecalledapp.jarinthe${dist}/libdirectory.F ileswiththenameTest.classareexcluded.Iftherearefilessuchasbuild/classes/mypackage/MyClass.class
and ${src}/resources/mypackage/image.gif, they will appear in the same direc-
tory in the JAR (and thus be considered in the same package by Java).

<jar destfile="test.jar" basedir=".">
<include name="build"/>
<manifest>
<attribute name="Built-By" value="${user.name}"/>
<section name="common/class1.class">

<attribute name="Sealed" value="false"/>

93 of 389

94 Ant Tasks

</section>
</manifest>

</jar>

This is an example of an inline manifest specification. Note that the Built-By
attribute will take the value of the Ant property ${user.name}. The manifest
produced by the above would look like this:

Manifest-Version: 1.0
Built-By: conor
Created-By: Apache Ant 1.5alpha

Name: common/class1.class
Sealed: false

5.2.38 Java

Description

Executes a Java class within the running (Ant) VM or forks another VM if
specified.

If odd things go wrong when you run this task, set fork=”true” to use a new
JVM.

Parameters

Attribute Description Required
Attribute Description Required
classname the Java class to execute. Either jar or

classname
jar the location of the jar file to execute (must have a Main-

Class entry in the manifest). Fork must be set to true
if this option is selected.

Either jar or
classname

args the arguments for the class that is executed. deprecated,
use nested ¡arg¿ elements instead.

No

classpath the classpath to use. No
classpathref the classpath to use, given as reference to a PATH de-

fined elsewhere.
No

fork if enabled triggers the class execution in another VM
(disabled by default)

No

jvm the command used to invoke the Java Virtual Ma-
chine, default is ’java’. The command is resolved by
java.lang.Runtime.exec(). Ignored if fork is disabled.

No

jvmargs the arguments to pass to the forked VM (ignored if fork
is disabled). deprecated, use nested ¡jvmarg¿ elements
instead.

No

94 of 389

5.2 Core Tasks 95

Attribute Description Required
maxmemory Max amount of memory to allocate to the forked VM

(ignored if fork is disabled)
No

failonerror Stop the buildprocess if the command exits with a re-
turncode other than 0. Default is ”false”

No

dir The directory to invoke the VM in. (ignored if fork is
disabled)

No

output Name of a file to write the output to. No
append whether output should be appended to or overwrite an

existing file. Defaults to false.
No

newenvironment Do not propagate old environment when new environ-
ment variables are specified. Default is ”false” (ignored
if fork is disabled).

No

timeout Stop the command if it doesn’t finish within the spec-
ified time (given in milliseconds). It is highly recom-
mended to use this feature only if fork is enabled.

No

Parameters specified as nested elements

arg and jvmarg

Use nested <arg> and <jvmarg> elements to specify arguments for the Java
class and the forked VM respectively. See Command line arguments.

sysproperty

Use nested <sysproperty> elements to specify system properties required
by the class. These properties will be made available to the VM during the
execution of the class (either ANT’s VM or the forked VM). The attributes for
this element are the same as for environment variables.

classpath

Java’s classpath attribute is a PATH like structure and can also be set via
a nested classpath element.

env

It is possible to specify environment variables to pass to the forked VM via
nested env elements. See the description in the section about exec

Settings will be ignored if fork is disabled.

Examples

<java classname="test.Main">
<arg value="-h"/>
<classpath>

<pathelement location="dist/test.jar"/>
<pathelement path="${java.class.path}"/>

95 of 389

96 Ant Tasks

</classpath>
</java>

Run a class in this JVM with a new jar on the classpath

<java jar="dist/test.jar"
fork="true"
failonerror="true"
maxmemory="128m"
>

<arg value="-h"/>
<classpath>

<pathelement location="dist/test.jar"/>
<pathelement path="${java.class.path}"/>

</classpath>
</java>

Run the jar using the manifest supplied entry point, forking (as required), and
with a maximum memory of 128MB. Any non zero return code breaks the build.

<java classname="test.Main"/>

<java classname="test.Main"
fork="yes" >

<sysproperty key="DEBUG" value="true"/>
<arg value="-h"/>
<jvmarg value="-Xrunhprof:cpu=samples,file=log.txt,depth=3"/>

</java>

Note: you can not specify the (highly deprecated) MSJVM, ”jview.exe” as the
JVM, as it takes different parameters for other JVMs, That JVM can be started
from <exec> if required.

5.2.39 Javac

Description

Compiles a Java source tree.
The source and destination directory will be recursively scanned for Java

source files to compile. Only Java files that have no corresponding .class file or
where the class file is older than the .java file will be compiled.

Note: Ant uses only the names of the source and class files to find the
classes that need a rebuild. It will not scan the source and therefore will have
no knowledge about nested classes, classes that are named different from the
source file, and so on. See the ¡depend¿ task for dependency checking based on
other than just existence/modification times.

When the source files are part of a package, the directory structure of the
source tree should follow the package hierarchy.

96 of 389

5.2 Core Tasks 97

It is possible to refine the set of files that are being compiled. This can
be done with the includes, includesfile, excludes, and excludesfile attributes.
With the includes or includesfile attribute, you specify the files you want to
have included. The exclude or excludesfile attribute is used to specify the files
you want to have excluded. In both cases, the list of files can be specified by
either the filename, relative to the directory(s) specified in the srcdir attribute
or nested ¡src¿ element(s), or by using wildcard patterns. See the section on
directory-based tasks, for information on how the inclusion/exclusion of files
works, and how to write wildcard patterns.

It is possible to use different compilers. This can be specified by either
setting the global build.compiler property, which will affect all <javac> tasks
throughout the build, or by setting the compiler attribute, specific to the current
<javac> task. Valid values for either the build.compiler property or the compiler
attribute are:

• classic (the standard compiler of JDK 1.1/1.2) ? javac1.1 and javac1.2
can be used as aliases.

• modern (the standard compiler of JDK 1.3/1.4) ? javac1.3 and javac1.4
can be used as aliases.

• jikes (the Jikes compiler).

• jvc (the Command-Line Compiler from Microsoft’s SDK for Java / Visual
J++) ? microsoft can be used as an alias.

• kjc (the kopi compiler).

• gcj (the gcj compiler from gcc).

• sj (Symantec java compiler) ? symantec can be used as an alias.

• extJavac (run either modern or classic in a JVM of its own).

The default is javac1.x with x depending on the JDK version you use while
you are running Ant. If you wish to use a different compiler interface than those
supplied, you can write a class that implements the CompilerAdapter interface
(package org.apache.tools.ant.taskdefs.compilers). Supply the full classname in
the build.compiler property or the compiler attribute.

The fork attribute overrides the build.compiler property or compiler at-
tribute setting and expects a JDK1.1 or higher to be set in JAVA HOME.

You can also use the compiler attribute to tell Ant which JDK version it
shall assume when it puts together the command line switches - even if you
set fork=”true”. This is useful if you want to run the compiler of JDK 1.1
while you current JDK is 1.2+. If you use compiler=”javac1.1” and (for exam-
ple) depend=”true” Ant will use the command line switch -depend instead of
-Xdepend.

This task will drop all entries that point to non-existent files/directories from
the classpath it passes to the compiler.

97 of 389

98 Ant Tasks

Windows Note:When the modern compiler is used in unforked mode on
Windows, it locks up the files present in the classpath of the ¡javac¿ task, and
does not release them. The side effect of this is that you will not be able to
delete or move those files later on in the build. The workaround is to fork when
invoking the compiler.

Parameters

Attribute Description Required
Attribute Description Required
srcdir Location of the java files. (See the note below.) Yes, unless

nested <src>
elements are
present.

destdir Location to store the class files. No
includes Comma- or space-separated list of files (may be spec-

ified using wildcard patterns) that must be included;
all .java files are included when omitted.

No

includesfile The name of a file that contains a list of files to
include (may be specified using wildcard patterns).

No

excludes Comma- or space-separated list of files (may be spec-
ified using wildcard patterns) that must be excluded;
no files (except default excludes) are excluded when
omitted.

No

excludesfile The name of a file that contains a list of files to
exclude (may be specified using wildcard patterns).

No

classpath The classpath to use. No
sourcepath The sourcepath to use; defaults to the value of the

srcdir attribute (or nested ¡src¿ elements). To sup-
press the sourcepath switch, use sourcepath=””.

No

bootclasspath Location of bootstrap class files. No
classpathref The classpath to use, given as a reference to a path

defined elsewhere.
No

sourcepathref The sourcepath to use, given as a reference to a path
defined elsewhere.

No

bootclasspathref Location of bootstrap class files, given as a reference
to a path defined elsewhere.

No

extdirs Location of installed extensions. No
encoding Encoding of source files. (Note: gcj doesn’t support

this option yet.)
No

nowarn Indicates whether the -nowarn switch should be
passed to the compiler; defaults to off.

No

98 of 389

5.2 Core Tasks 99

Attribute Description Required
debug Indicates whether source should be compiled with de-

bug information; defaults to off. If set to off, -g:none
will be passed on the command line for compilers
that support it (for other compilers, no command
line argument will be used). If set to true, the value
of the debuglevel attribute determines the command
line argument.

No

debuglevel Keyword list to be appended to the -g command-line
switch. This will be ignored by all implementations
except modern and classic(ver ¿= 1.2). Legal values
are none or a comma-separated list of the following
keywords: lines, vars, and source. If debuglevel is
not specified, by default, nothing will be appended
to -g. If debug is not turned on, this attribute will
be ignored.

No

optimize Indicates whether source should be compiled with
optimization; defaults to off.

No

deprecation Indicates whether source should be compiled with
deprecation information; defaults to off.

No

target Generate class files for specific VM version (e.g., 1.1
or 1.2). Note that the default value depends on the
JVM that is running Ant. In particular, if you use
JDK 1.4 the generated classes will not be usable for
a 1.1 Java VM unless you explicitly set this attribute
to the value 1.1 (which is the default value for JDK
1.1 to 1.3).

No

verbose Asks the compiler for verbose output. No
depend Enables dependency-tracking for compilers that sup-

port this (jikes and classic).
No

includeAntRuntime Whether to include the Ant run-time libraries in the
classpath; defaults to yes.

No

includeJavaRuntime Whether to include the default run-time libraries
from the executing VM in the classpath; defaults to
no.

No

fork Whether to execute javac using the JDK compiler
externally; defaults to no.

No

executable Complete path to the javac executable to use in case
of fork=”yes”. Defaults to the compiler of the Java
version that is currently running Ant. Ignored if
fork=”no”

No

99 of 389

100 Ant Tasks

Attribute Description Required
memoryInitialSize The initial size of the memory for the underlying VM,

if javac is run externally; ignored otherwise. Defaults
to the standard VM memory setting. (Examples:
83886080, 81920k, or 80m)

No

memoryMaximumSize The maximum size of the memory for the underly-
ing VM, if javac is run externally; ignored otherwise.
Defaults to the standard VM memory setting. (Ex-
amples: 83886080, 81920k, or 80m)

No

failonerror Indicates whether the build will continue even if
there are compilation errors; defaults to true.

No

source Value of the -source command-line switch; will be
ignored by all implementations except javac1.4 (or
modern when Ant is not running in a 1.3 VM) and
jikes. If you use this attribute together with jikes,
you must make sure that your version of jikes sup-
ports the -source switch. Legal values are 1.3 and
1.4 – by default, no -source argument will be used at
all.

No

compiler The compiler implementation to use. If this attribute
is not set, the value of the build.compiler property,
if set, will be used. Otherwise, the default compiler
for the current VM will be used. (See the above list
of valid compilers.)

No

listfiles Indicates whether the source files to be compiled will
be listed; defaults to no.

No

Parameters specified as nested elements

This task forms an implicit FileSet and supports all attributes of <fileset> (dir
becomes srcdir) as well as the nested <include>, <exclude> and <patternset>
elements. src, classpath, sourcepath, bootclasspath and extdirs

<javac>’s srcdir, classpath, sourcepath, bootclasspath, and extdirs attributes
are path-like structures and can also be set via nested <src>, <classpath>,
<sourcepath>, <bootclasspath> and <extdirs> elements, respectively.

compilerarg

You can specify additional command line arguments for the compiler with
nested <compilerarg> elements. These elements are specified like Command-
line Arguments but have an additional attribute that can be used to enable
arguments only if a given compiler implementation will be used.

100 of 389

5.2 Core Tasks 101

Attribute Description Required
value
line
file
path

See Command-line Arguments. Exactly one of these.

compiler Only pass the specified argument if the chosen
compiler implementation matches the value of
this attribute. Legal values are the same as
those in the above list of valid compilers.)

No

Examples

<javac srcdir="${src}"
destdir="${build}"
classpath="xyz.jar"
debug="on"

/>

compiles all .java files under the srcdirectory, andstoresthe.classfilesinthebuild
directory. The classpath used includes xyz.jar, and compiling with debug infor-
mation is on.

<javac srcdir="${src}"
destdir="${build}"
fork="true"

/>

compiles all .java files under the srcdirectory, andstoresthe.classfilesinthebuild
directory. This will fork off the javac compiler using the default javac executable.

<javac srcdir="${src}"
destdir="${build}"
fork="java$$javac.exe"

/>

compiles all .java files under the srcdirectory, andstoresthe.classfilesinthebuild
directory. This will fork off the javac compiler, using the executable named
javajavac.exe.Notethatthe sign needs to be escaped by a second one.

<javac srcdir="${src}"
destdir="${build}"
includes="mypackage/p1/**,mypackage/p2/**"
excludes="mypackage/p1/testpackage/**"
classpath="xyz.jar"
debug="on"

/>

compiles .java files under the srcdirectory, andstoresthe.classfilesinthebuild
directory. The classpath used includes xyz.jar, and debug information is on.

101 of 389

102 Ant Tasks

Only files under mypackage/p1 and mypackage/p2 are used. All files in and
below the mypackage/p1/testpackage directory are excluded from compilation.

<javac srcdir="${src}:${src2}"
destdir="${build}"
includes="mypackage/p1/**,mypackage/p2/**"
excludes="mypackage/p1/testpackage/**"
classpath="xyz.jar"
debug="on"

/>

is the same as the previous example, with the addition of a second source path,
defined by the property src2. This can also be represented using nested ¡src¿
elements as follows:

<javac destdir="${build}"
classpath="xyz.jar"
debug="on">

<src path="${src}"/>
<src path="${src2}"/>
<include name="mypackage/p1/**"/>
<include name="mypackage/p2/**"/>
<exclude name="mypackage/p1/testpackage/**"/>

</javac>

If you want to run the javac compiler of a different JDK, you should tell Ant,
where to find the compiler and which version of JDK you will be using so it
can choose the correct command line switches. The following example executes
a JDK 1.1 javac in a new process and uses the correct command line switches
even when Ant is running in a Java VM of a different version:

<javac srcdir="${src}"
destdir="${build}"
fork="yes"
executable="/opt/java/jdk1.1/bin/javac"
compiler="javac1.1"

/>

Note: If you wish to compile only source files located in certain packages below
a common root, use the include/exclude attributes or <include>/<exclude>
nested elements to filter for these packages. Do not include part of your pack-
age structure in the srcdir attribute (or nested <src> elements), or Ant will
recompile your source files every time you run your compile target. See the Ant
FAQ for additional information.

Note: If you are using Ant on Windows and a new DOS window pops up for
every use of an external compiler, this may be a problem of the JDK you are
using. This problem may occur with all JDKs < 1.2.

102 of 389

5.2 Core Tasks 103

Jikes Notes

Jikes supports some extra options, which can be set be defining the properties
shown below prior to invoking the task. The setting for each property will be in
affect for all ¡javac¿ tasks throughout the build. The Ant developers are aware
that this is ugly and inflexible ? expect a better solution in the future. All the
options are boolean, and must be set to true or yes to be interpreted as anything
other than false. By default, build.compiler.warnings is true, while all others
are false.

Property Description Default
build.compiler.emacs Enable emacs-compatible error

messages.
false

build.compiler.fulldepend Enable full dependency checking;
see the +F switch in the Jikes
manual.

false

build.compiler.pedantic Enable pedantic warnings. false
build.compiler.warnings Depre-
cated. Use <javac>’s nowarn at-
tribute instead.

Don’t disable warning messages. true

5.2.40 Javadoc/Javadoc2

Description

Generates code documentation using the javadoc tool.
The source directory will be recursively scanned for Java source files to pro-

cess but only those matching the inclusion rules, and not matching the exclusions
rules will be passed to the javadoc tool. This allows wildcards to be used to
choose between package names, reducing verbosity and management costs over
time. This task, however, has no notion of ”changed” files, unlike the javac
task. This means all packages will be processed each time this task is run. In
general, however, this task is used much less frequently.

This task works seamlessly between different javadoc versions (1.1, 1.2 and
1.4), with the obvious restriction that the 1.2 attributes will be ignored if run
in a 1.1 VM.

NOTE: since javadoc calls System.exit(), javadoc cannot be run inside the
same VM as ant without breaking functionality. For this reason, this task always
forks the VM. This overhead is not significant since javadoc is normally a heavy
application and will be called infrequently.

NOTE: the packagelist attribute allows you to specify the list of packages
to document outside of the Ant file. It’s a much better practice to include
everything inside the build.xml file. This option was added in order to make
it easier to migrate from regular makefiles, where you would use this option
of javadoc. The packages listed in packagelist are not checked, so the task
performs even if some packages are missing or broken. Use this option if you
wish to convert from an existing makefile. Once things are running you should
then switch to the regular notation.

103 of 389

104 Ant Tasks

DEPRECATION: the javadoc2 task simply points to the javadoc task and
it’s there for back compatibility reasons. Since this task will be removed in
future versions, you are strongly encouraged to use javadoc instead.

In the table below, 1.1 means available if your current Java VM is a 1.1 VM,
1.2 for either 1.2 or 1.3 and 1.4 for a 1.4 Java VM. 1.2+ means any VM of at
least version 1.2.

Parameters

Attribute Description Required
Attribute Description Availability Required

sourcepath
sourcepathref
hline sourcefiles

Specify where to find
source files
Specify where to find
source files by refer-
ence to a PATH de-
fined elsewhere.
Comma separated list
of source files

all
all At least one of the three

or nested <sourcepath>,
<fileset> or
<packageset>

destdir Destination directory for
output files

all Yes, unless a doclet has
been specified.

maxmemory Max amount of memory
to allocate to the javadoc
VM

all No

packagenames Comma separated list of
package files (with termi-
nating wildcard)

all No

packageList The name of a file contain-
ing the packages to pro-
cess

1.2+ No

classpath Specify where to find user
class files

all No

Bootclasspath Override location of class
files loaded by the boot-
strap class loader

1.2+ No

classpathref Specify where to find user
class files by reference to a
PATH defined elsewhere.

all No

bootclasspathref Override location of class
files loaded by the boot-
strap class loader by ref-
erence to a PATH defined
elsewhere.

1.2+ No

104 of 389

5.2 Core Tasks 105

Attribute Description Required
Extdirs Override location of in-

stalled extensions
1.2+ No

Overview Read overview documen-
tation from HTML file

1.2+ No

access Access mode: one of pub-
lic, protected, package, or
private

all No (default protected)

Public Show only public classes
and members

all No

Protected Show protected/public
classes and members
(default)

all No

Package Show pack-
age/protected/public
classes and members

all No

Private Show all classes and mem-
bers

all No

Old Generate output using
JDK 1.1 emulating doclet

1.2 No

Verbose Output messages about
what Javadoc is doing

1.2+ No

Locale Locale to be used, e.g.
en US or en US WIN

1.2+ No

Encoding Source file encoding name all No
Version Include @version para-

graphs
all No

Use Create class and package
usage pages

1.2+ No

Author Include @author para-
graphs

all No

Splitindex Split index into one file
per letter

1.2+ No

Windowtitle Browser window title for
the documentation (text)

1.2+ No

Doctitle Include title for the
package index(first) page
(html-code)

1.2+ No

Header Include header text for
each page (html-code)

1.2+ No

Footer Include footer text for
each page (html-code)

1.2+ No

105 of 389

106 Ant Tasks

Attribute Description Required
bottom Include bottom text for

each page (html-code)
1.2+ No

link Create links to javadoc
output at the given URL

1.2+ No

linkoffline Link to docs at ¡url¿ using
package list at ¡url2¿ - sep-
arate the URLs by using a
space character.

1.2+ No

group Group specified packages
together in overview page.
The format is as described
below.

1.2+ No

nodeprecated Do not include @depre-
cated information

all No

nodeprecatedlist Do not generate depre-
cated list

1.2+ No

notree Do not generate class hi-
erarchy

all No

noindex Do not generate index all No
nohelp Do not generate help link 1.2+ No
nonavbar Do not generate naviga-

tion bar
1.2+ No

serialwarn Generate warning about
@serial tag

1.2+ No

helpfile Specifies the HTML help
file to use

1.2+ No

stylesheetfile Specifies the CSS
stylesheet to use

1.2+ No

charset Charset for cross-platform
viewing of generated doc-
umentation

1.2+ No

docencoding Output file encoding name all No
doclet Specifies the class file that

starts the doclet used in
generating the documen-
tation.

1.2+ No

docletpath Specifies the path to the
doclet class file that is
specified with the -doclet
option.

1.2+ No

106 of 389

5.2 Core Tasks 107

Attribute Description Required
docletpathref Specifies the path to the

doclet class file that is
specified with the -doclet
option by reference to a
PATH defined elsewhere.

1.2+ No

additionalparam Lets you add additional
parameters to the javadoc
command line. Useful for
doclets. Parameters con-
taining spaces need to be
quoted using ".

all No

failonerror Stop the buildprocess if
the command exits with a
returncode other than 0.

all No

excludepackagenames comma separated list of
packages you don’t want
docs for.

all No

defaultexcludes indicates whether default
excludes should be used
(yes — no); default ex-
cludes are used when
omitted.

all No

useexternalfile indicates whether the
sourcefile name specified
in srcfiles or as nested
source elements should be
written to a temporary
file to make the command
line shorter. Also applies
to the package names
specified via the package-
names attribute or nested
package elements. (yes —
no). Default is no.

1.2+ No

107 of 389

108 Ant Tasks

Attribute Description Required
source Necessary to enable

javadoc to handle asser-
tions present in J2SE v
1.4 source code. Set this
to ”1.4” to documents
code that compiles using
”javac -source 1.4”.

1.4 No

Format of the group attribute

The arguments are comma-delimited. Each single argument is 2 space-delimited
strings, where the first one is the group’s title and the second one a colon
delimited list of packages.

If you need to specify more than one group, or a group whose title contains
a comma or a space character, using nested group elements is highly recom-
mended.

E.g.,

group="XSLT_Packages org.apache.xalan.xslt*,
XPath_Packages org.apache.xalan.xpath*"

Parameters specified as nested elements

packageset

A DirSet. All matched directories that contain Java source files will be
passed to javadoc as package names. Package names are created from the direc-
tory names by translating the directory separator into dots. Ant assumes the
base directory of the packageset points to the root of a package hierarchy.

The packagenames, excludepackagenames and defaultexcludes attributes of
the task have no effect on the nested <packageset> elements.

fileset

A FileSet. All matched files will be passed to javadoc as source files. Ant
will automatically add the include pattern **/*.java to these filesets.

Nested filesets can be used to document sources that are in the default
package or if you want to exclude certain files from documentation. If you
want to document all source files and don’t use the default package, packagesets
should be used instead as this increases javadocs performance.

The packagenames, excludepackagenames and defaultexcludes attributes of
the task have no effect on the nested <fileset> elements.

package

Same as one entry in the list given by packagenames.

108 of 389

5.2 Core Tasks 109

Parameters

Attribute Description Required
name The package name (may be a wildcard) Yes

excludepackage

Same as one entry in the list given by excludepackagenames.

Parameters

Same as for package.

source

Same as one entry in the list given by sourcefiles.

Parameters

Attribute Description Required
file The source file to document Yes

bf doctitle

Same as the doctitle attribute, but you can nest text inside the element this
way.

header

Similar to <doctitle>.

footer

Similar to <doctitle>.

bottom

Similar to <doctitle>.

link

Create link to javadoc output at the given URL. This performs the same
role as the link and linkoffline attributes. You can use either syntax (or both at
once), but with the nested elements you can easily specify multiple occurrences
of the arguments.

Parameters

109 of 389

110 Ant Tasks

Attribute Description Required
href The URL for the external docu-

mentation you wish to link to
Yes

offline True if this link is not available
online at the time of generating
the documentation

No

packagelistLoc The location to the directory
containing the package-list file
for the external documentation

Only if the offline
attribute is true

group

Separates packages on the overview page into whatever groups you specify,
one group per table. This performs the same role as the group attribute. You
can use either syntax (or both at once), but with the nested elements you can
easily specify multiple occurrences of the arguments.

Parameters

Attribute Description Required
title Title of the group Yes, unless nested

<title> given
packages List of packages to include in

that group. Multiple packages
are separated with ’:’.

Yes, unless nested
<package>s given

The title may be specified as a nested <title> element with text contents,
and the packages may be listed with nested <package> elements as for the main
task.

doclet

The doclet nested element is used to specify the doclet that javadoc will use
to process the input source files. A number of the standard javadoc arguments
are actually arguments of the standard doclet. If these are specified in the
javadoc task’s attributes, they will be passed to the doclet specified in the
<doclet> nested element. Such attributes should only be specified, therefore,
if they can be interpreted by the doclet in use.

If the doclet requires additional parameters, these can be specified with
<param> elements within the <doclet> element. These paramaters are re-
stricted to simple strings. An example usage of the doclet element is shown
below:

<javadoc ... >
<doclet name="theDoclet"

path="path/to/theDoclet">
<param name="-foo" value="foovalue"/>
<param name="-bar" value="barvalue"/>

</doclet>
</javadoc>

110 of 389

5.2 Core Tasks 111

tag

The tag nested element is used to specify custom tags. This option is only
available with Java 1.4.

Parameters

Attribute Description Required
name Name of the tag (e.g. todo) Yes
description Description for tag (e.g. To do:) Yes
enabled Whether or not the tag is enabled (de-

faults to true)
No

scope Scope for the tag - the elements in
which it can be used. This is a comma
separated list of some of the elements:
overview, packages, types, constructors,
methods, fields or the default, all.

No

taglet

The taglet nested element is used to specify custom taglets. This option is
only available with Java 1.4.

Parameters
Attribute Description Required
name The name of the taglet class (e.g.

com.sun.tools.doclets.ToDoTaglet)
Yes

path A path specifying the search path for
the taglet class (e.g. /home/taglets).
The path may also be specified by a
nested <path> element

No

sourcepath, classpath and bootclasspath

Javadoc’s sourcepath, classpath and bootclasspath attributes are PATH like
structure and can also be set via nested sourcepath, classpath and bootclasspath
elements respectively.

Example

<javadoc packagenames="com.dummy.test.*"
sourcepath="src"
excludepackagenames="com.dummy.test.doc-files.*"
defaultexcludes="yes"
destdir="docs/api"
author="true"
version="true"
use="true"
windowtitle="Test API">

<doctitle><![CDATA[<h1>Test</h1>]]></doctitle>

111 of 389

112 Ant Tasks

<bottom><![CDATA[<i>Copyright ©
2000 Dummy Corp. All Rights Reserved.</i>]]></bottom>

<tag name="todo" scope="all" description="To do:" />
<group title="Group 1 Packages" packages="com.dummy.test.a*"/>
<group title="Group 2 Packages"
packages="com.dummy.test.b*:com.dummy.test.c*"/>

<link offline="true"
href="http://java.sun.com/products/jdk/1.2/docs/api/"
packagelistLoc="C:\tmp"/>

<link href="http://developer.java.sun.com/developer/products/xml/docs/api/"/>
</javadoc>

is the same as

<javadoc
destdir="docs/api"
author="true"
version="true"
use="true"
windowtitle="Test API">

<packageset dir="src" defaultexcludes="yes">
<include name="com/dummy/test/**" />
<exclude name="com/dummy/test/doc-files/**"/>

</packageset>

<doctitle><![CDATA[<h1>Test</h1>]]></doctitle>
<bottom><![CDATA[<i>Copyright ©

2000 Dummy Corp. All Rights Reserved.</i>]]></bottom>
<tag name="todo" scope="all" description="To do:" />
<group title="Group 1 Packages" packages="com.dummy.test.a*"/>
<group title="Group 2 Packages"
packages="com.dummy.test.b*:com.dummy.test.c*"/>

<link offline="true"
href="http://java.sun.com/products/jdk/1.2/docs/api/"
packagelistLoc="C:\tmp"/>

<link href="http://developer.java.sun.com/developer/products/xml/docs/api/"/>
</javadoc>

or

<javadoc
destdir="docs/api"
author="true"
version="true"
use="true"
windowtitle="Test API">

112 of 389

5.2 Core Tasks 113

<fileset dir="src" defaultexcludes="yes">
<include name="com/dummy/test/**" />
<exclude name="com/dummy/test/doc-files/**"/>

</fileset>

<doctitle><![CDATA[<h1>Test</h1>]]></doctitle>
<bottom><![CDATA[<i>Copyright ©

2000 Dummy Corp. All Rights Reserved.</i>]]></bottom>
<tag name="todo" scope="all" description="To do:" />
<group title="Group 1 Packages" packages="com.dummy.test.a*"/>
<group title="Group 2 Packages" packages="com.dummy.test.b*:com.dummy.test.c*"/>
<link offline="true"
href="http://java.sun.com/products/jdk/1.2/docs/api/" packagelistLoc="C:\tmp"/>
<link href="http://developer.java.sun.com/developer/products/xml/docs/api/"/>

</javadoc>

5.2.41 LoadFile

Description

Load a text file into a single property. Unless an encoding is specified, the
encoding of the current locale is used.

Parameters

Attribute Description Required
srcFile source file Yes
property property to save to Yes
encoding encoding to use when loading the file No
failonerror Whether to halt the build on failure No, default ”true”

The LoadFile task supports nested FilterChains.

Examples

<loadfile property="message"
srcFile="message.txt"/>

Load file message.txt into property ”message”; an ¡echo¿ can print this.

<loadfile property="encoded-file"
srcFile="loadfile.xml"
encoding="ISO-8859-1"/>

Load a file using the latin-1 encoding

<loadfile
property="optional.value"

113 of 389

114 Ant Tasks

srcFile="optional.txt"
failonerror="false"/>

Load a file, don’t fail if it is missing (a message is printed, though)

<loadfile
property="mail.recipients"
srcFile="recipientlist.txt">
<filterchain>
<striplinebreaks/>

</filterchain>
</loadfile>

Load a property which can be used as a parameter for another task (in this case
mail), merging lines to ensure this happens.

<loadfile
property="system.configuration.xml"
srcFile="configuration.xml">
<expandproperties/>

</loadfile>

Load an XML file into a property, expanding all properties declared in the file
in the process.

5.2.42 LoadProperties

Description

Load a file’s contents as Ant properties. This is equivalent to <property
file="..."/> except that it supports nested <filterchain> elements and it
cannot be specified outside a target.

If you want to simulate property’s prefix attribute, please use prefixlines
filter.

Parameters

Attribute Description Required
srcFile source file Yes

The LoadProperties task supports nested FilterChains.

Examples

<loadproperties srcFile="file.properties"/>

Load contents of file.properties as Ant properties.

<loadproperties srcFile="file.properties">
<filterchain>

114 of 389

5.2 Core Tasks 115

<linecontains>
<contains value="import."/>

</linecontains>
</filterchain>

</loadproperties>

Read the lines that contain the string ”import.” from the file ”file.properties”
and load them as Ant properties.

5.2.43 Mail

Description

A task to send SMTP email. This task can send mail using either plain text, UU
encoding, or MIME format mail, depending on what is available. Attachments
may be sent using nested fileset elements.

Note: This task may depend on external libraries that are not included in
the Ant distribution. See Library Dependencies for more information.

Parameters

Attribute Description Required
Attribute Description Required
from Email address of sender. Either a from attribute, or

a <from> element.

tolist
cclist
bcclist

Comma-separated list of recipients.
Comma-separated list of recipients
to carbon copy Comma-separated
list of recipients to carbon copy

At least one of these, or
the equivalent elements.

message
messagefile

Message to send in the body of the
email.
File to send as the body of the email.
Property values in the file will be ex-
panded.

One of these or a
<message> element.

messagemimetype The content type of the message. The
default is text/plain.

No

files Files to send as attachments to the
email. Separate multiple file names us-
ing a comma or space. You can also use
¡fileset¿ elements to specify files.

No

failonerror flag to indicate whether to halt the
build on any error. The default value
is true.

No.

115 of 389

116 Ant Tasks

Attribute Description Required
includefilenames Include filename(s) before file contents.

Valid only when the plain encoding is
used. The default value is false.

No

mailhost Host name of the SMTP server. The
default value is localhost.

No

mailport TCP port of the SMTP server. The
default value is 25.

No

encoding Specifies the encoding to use for the
content of the email. Values are mime,
uu, plain, or auto. The default value is
auto.

No

subject Email subject line. No

Parameters specified as nested elements

to / cc / bcc / from

Adds an email address element. It takes the following attributes:
Attribute Description Required
Attribute Description Required
name The display name for the address. No
address The email address. Yes

message

Specifies the message to include in the email body. It takes the following
attributes:
Attribute Description Required
Attribute Description Required
src The file to use as the message. No
mimetype The content type to use for the mes-

sage.
No

If the src attribute is not specified, then text can be added inside the
<message> element. Property expansion will occur in the message, whether
it is specified as an external file or as text within the <message> element.

Examples

<mail from="me"
tolist="you"
subject="Results of nightly build"
files="build.log"/>

Sends an email from me to you with a subject of Results of nightly build and
includes the contents of the file build.log in the body of the message.

<mail mailhost="smtp.myisp.com" mailport="1025" subject="Test build">

116 of 389

5.2 Core Tasks 117

<from address="me@myisp.com"/>
<to address="all@xyz.com"/>
<message>The ${buildname} nightly build has completed</message>
<fileset dir="dist">

<includes name="**/*.zip"/>
</fileset>

</mail>

Sends an eMail from me@myisp.com to all@xyz.com with a subject of Test Build
and attaches any zip files from the dist directory. The task will attempt to use
JavaMail and fall back to UU encoding or no encoding in that order depending
on what support classes are available. ${buildname} will be replaced with the
buildname property’s value.

5.2.44 Manifest

Description

Creates a manifest file.
This task can be used to write a Manifest file, optionally replacing or up-

dating an existing file.
Manifests are processed according to the Jar file specification.. Specifically,

a manifest element consists of a set of attributes and sections. These sections in
turn may contain attributes. Note in particular that this may result in manifest
lines greater than 72 bytes being wrapped and continued on the next line.

Parameters

Attribute Description Required
Attribute Description Required
file the manifest-file to create/update. Yes
mode One of ”update” or ”replace”, default

is ”replace”.
No

encoding The encoding used to read the existing
manifest when updating.

No, defaults to UTF-8 en-
coding.

Nested elements

attribute

One attribute for the manifest file. Those attributes that are not nested into
a section will be added to the ”Main” section.
Attribute Description Required
name the name of the attribute. Yes

value the value of the attribute. Yes
section

A manifest section - you can nest attribute elements into sections.

117 of 389

118 Ant Tasks

Attribute Description Required
name the name of the section. No, if omitted it will be as-

sumed to be the main sec-
tion.

Examples

<manifest file="MANIFEST.MF">
<attribute name="Built-By" value="${user.name}"/>
<section name="common">

<attribute name="Specification-Title" value="Example"/>
<attribute name="Specification-Version" value="${version}"/>
<attribute name="Specification-Vendor" value="Example Organization"/>
<attribute name="Implementation-Title" value="common"/>
<attribute name="Implementation-Version" value="${version} ${TODAY}"/>
<attribute name="Implementation-Vendor" value="Example Corp."/>

</section>
<section name="common/class1.class">

<attribute name="Sealed" value="false"/>
</section>

</manifest>

Creates or replaces the file MANIFEST.MF. Note that the Built-By attribute
will take the value of the Ant property ${user.name}. The same is true for
the ${version} and ${TODAY} properties. This example produces a MANI-
FEST.MF that contains package version identification for the package common.

The manifest produced by the above would look like this:

Manifest-Version: 1.0
Built-By: bodewig
Created-By: Apache Ant 1.5alpha

Name: common
Specification-Title: Example
Specification-Vendor: Example Organization
Implementation-Vendor: Example Corp.
Specification-Version: 1.1
Implementation-Version: 1.1 February 19 2002
Implementation-Title: common

Name: common/class1.class
Sealed: false

118 of 389

5.2 Core Tasks 119

5.2.45 Mkdir

Description

Creates a directory. Also non-existent parent directories are created, when
necessary.

Parameters

Attribute Description Required
dir the directory to create. Yes
Examples

<mkdir dir="${dist}"/>

creates a directory ${dist}.
<mkdir dir="${dist}/lib"/>

creates a directory ${dist}/lib.

5.2.46 Move

Description

Moves a file to a new file or directory, or sets of files to a new directory. By
default, the destination file is overwritten if it already exists. When overwrite
is turned off, then files are only moved if the source file is newer than the
destination file, or when the destination file does not exist.

FileSets are used to select sets of files to move to the todir directory.

Parameters

Attribute Description Required
file the file to move One of file or at least one

nested fileset element
preservelastmodified Give the moved files the same last mod-

ified time as the original source files.
(Note: Ignored on Java 1.1)

No; defaults to false.

tofile
todir

the file to move to
todir the directory to move to

With the file attribute, ei-
ther tofile or can be used.
With nested filesets, if the
fileset size is greater than
1 or if the only entry in the
fileset is a directory or if
the file attribute is already
specified, only todir is al-
lowed

119 of 389

120 Ant Tasks

Attribute Description Required
overwrite overwrite existing files even if the desti-

nation files are newer (default is ”true”)
No

filtering indicates whether token filtering should
take place during the move. See the
filter task for a description of how filters
work.

No

flatten ignore directory structure of source di-
rectory, copy all files into a single di-
rectory, specified by the todir attribute
(default is ”false”).Note that you can
achieve the same effect by using a flat-
ten mapper

No

includeEmptyDirs Copy empty directories included with
the nested FileSet(s). Defaults to
”yes”.

No

failonerror Log a warning message, but do not stop
the build, when the file to move does
not exist. Only meaningful when mov-
ing a single file.

No; defaults to true.

verbose Log the files that are being moved. No; defaults to false.
encoding The encoding to assume when filter-

moving the files. since Ant 1.5.
No - defaults to default
JVM encoding

Parameters specified as nested elements

mapper

You can define file name transformations by using a nested mapper element.
The default mapper used by <copy> is the identity.

filterchain

The Move task supports nested FilterChains.
If <filterset> and <filterchain> elements are used inside the same <move>

task, all <filterchain> elements are processed first followed by <filterset>
elements.

Examples

Move a single file (rename a file)

<move file="file.orig" tofile="file.moved"/>

Move a single file to a directory

<move file="file.orig" todir="dir/to/move/to"/>

Move a directory to a new directory

120 of 389

5.2 Core Tasks 121

<move todir="new/dir/to/move/to">
<fileset dir="src/dir"/>

</move>

Move a set of files to a new directory

<move todir="some/new/dir">
<fileset dir="my/src/dir">
<include name="**/*.jar"/>
<exclude name="**/ant.jar"/>

</fileset>
</move>

Append ”.bak” to the names of all files in a directory.

<move todir="my/src/dir">
<fileset dir="my/src/dir">
<exclude name="**/*.bak"/>

</fileset>
<mapper type="glob" from="*" to="*.bak"/>

</move>

5.2.47 Parallel

Description

Parallel is a container task - it can contain other Ant tasks. Each nested task
within the parallel task will be executed in its own thread.

Parallel tasks have a number of uses in an Ant build file including:

• Taking advantage of available processing resources to reduce build time

• Testing servers, where the server can be run in one thread and the test
harness is run in another thread.

Care must be taken when using multithreading to ensure the tasks within
the threads do not interact. For example, two javac compile tasks which write
classes into the same destination directory may interact where one tries to read
a class for dependency information while the other task is writing the class file.
Be sure to avoid these types of interactions within a <parallel> task

The parallel task has no attributes and does not support any nested elements
apart from Ant tasks. Any valid Ant task may be embedded within a parallel
task, including other parallel tasks.

Note that while the tasks within the parallel task are being run, the main
thread will be blocked waiting for all the child threads to complete.

If any of the tasks within the <parallel> task fails, the remaining tasks
in other threads will continue to run until all threads have completed. In this
situation, the parallel task will also fail.

The parallel task may be combined with the sequential task to define se-
quences of tasks to be executed on each thread within the parallel block

121 of 389

122 Ant Tasks

Examples

<parallel>
<wlrun ... >
<sequential>

<sleep seconds="30"/>
<junit ... >
<wlstop/>

</sequential>
</parallel>

This example represents a typical pattern for testing a server application. In
one thread the server is started (the wlrun task). The other thread consists of
a three tasks which are performed in sequence. The sleep task is used to give
the server time to come up. Another task which is capable of validating that
the server is available could be used in place of the sleep task. The test harness
is then run. Once the tests are complete, the server is stopped (using wlstop
in this example), allowing both threads to complete. The parallel task will also
complete at this time and the build will then continue.

<parallel>
<javac ...> <!-- compiler servlet code -->
<wljspc ...> <!-- precompile JSPs -->

</parallel>

This example shows two independent tasks being run to achieve better resource
utilization during the build. In this instance, some servlets are being compiled in
one thead and a set of JSPs is being precompiled in another. As noted above,
you need to be careful that the two tasks are independent, both in terms of
their dependencies and in terms of their potential interactions in Ant’s external
environment.

5.2.48 Patch

Description

Applies a diff file to originals. ; requires ”patch” to be on the execution path.

Parameters

Attribute Description Required
patchfile the file that includes the diff output Yes

originalfile the file to patch No, tries to guess it from
the diff file

backups Keep backups of the unpatched files No
quiet Work silently unless an error occurs No
reverse Assume patch was created with old and

new files swapped.
No

122 of 389

5.2 Core Tasks 123

Attribute Description Required
ignorewhitespace Ignore whitespace differences. No
strip Strip the smallest prefix containing

num leading slashes from filenames.
No

dir The directory in which to run the patch
command.

No, default is the project’s
basedir.

Examples

<patch patchfile="module.1.0-1.1.patch"/>

applies the diff included in module.1.0-1.1.patch to the files in base directory
guessing the filename(s) from the diff output.

<patch patchfile="module.1.0-1.1.patch" strip="1"/>

like above but one leading directory part will be removed. i.e. if the diff output
looked like

--- a/mod1.0/A Mon Jun 5 17:28:41 2000
+++ a/mod1.1/A Mon Jun 5 17:28:49 200

the leading a/ will be stripped.

5.2.49 PathConvert

Description

Converts a nested <path> or reference to a Path, FileSet, DirSet, or FileList into
a path form for a particular platform, and stores the result in a given property.
It can also be used when you need to convert a Path, FileSet, or DirSet into a
list, separated by a given character, such as a comma or space, or, conversely,
to convert a list of files in a FileList into a path.

Nested <map> elements can be specified to map Windows drive letters to
Unix paths, and vice-versa.

Parameters

Attribute Description Required
targetos The target architecture. Must be one

of ’unix’, ’windows’, ’netware’ or ’os/2’.
This is a shorthand mechanism for spec-
ifying both pathsep and dirsep accord-
ing to the specified target architecture.

Yes, unless pathsep
and/or dirsep are speci-
fied.

123 of 389

124 Ant Tasks

Attribute Description Required
dirsep The character(s) to use as the directory

separator in the generated paths.
No, defaults to current
JVM File.separator

pathsep The character(s) to use as the path-
element separator in the generated
paths.

No, defaults to current
JVM File.pathSeparator

property The name of the property in which to
place the converted path.

Yes

refid What to convert, given as a reference
to a <path>, <fileset>, <dirset>, or
<filelist> defined elsewhere

No; if omitted, a nested
<path> element must be
supplied.

setonempty Should the property be set, even if the
result is the empty string?

No; default is ”true”.

Parameters specified as nested elements

map

Specifies the mapping of path prefixes between Unix and Windows.
Attribute Description Required
from The prefix to match. Note that this

value is case-insensitive when the build
is running on a Windows platform and
case-sensitive when running on a Unix
platform.

Yes

to The replacement text to use when from
is matched.

Yes

Each map element specifies a single replacement map to be applied to the
elements of the path being processed. If no map entries are specified, then no
path prefix mapping is performed.

Note: The map elements are applied in the order specified, and only the first
matching map element is applied. So, the ordering of your map elements can
be important, if any from values are prefixes of other from values.

path

If the refid attribute is not specified, then a nested ¡path¿ element must be
supplied. See Path-like Structures for details.

Examples

In the examples below, assume that the ${wl.home} property has the value d:
weblogic, and ${wl.home.unix} has the value /weblogic.

Example 1

<path id="wl.path">
<pathelement location="${wl.home}/lib/weblogicaux.jar"/>

124 of 389

5.2 Core Tasks 125

<pathelement location="${wl.home}/classes"/>
<pathelement location="${wl.home}/mssqlserver4/classes"/>
<pathelement location="c:\winnt\System32"/>

</path>

<pathconvert targetos="unix" property="wl.path.unix" refid="wl.path">
<map from="${wl.home}" to="${wl.home.unix}"/>
<map from="c:" to=""/>

</pathconvert>

will generate the path shown below and store it in the property named wl.path.unix.
/weblogic/lib/weblogicaux.jar:/weblogic/classes:/weblogic/mssqlserver4/classes:/WINNT/SYSTEM32
Example 2

Given a FileList defined as:

<filelist id="custom_tasks.jars"
dir="${env.HOME}/ant/lib"
files="njavac.jar,xproperty.jar"/>

then:

<pathconvert targetos="unix"
property="custom_tasks.jars" refid="custom_tasks.jars">
<map from="${env.HOME}" to="/usr/local"/>

</pathconvert>

will convert the list of files to the following Unix path:
/usr/local/ant/lib/njavac.jar:/usr/local/ant/lib/xproperty.jar
Example 3

<fileset dir="${src.dir}" id="src.files">
<include name="**/*.java"/>

</fileset>

<pathconvert pathsep="," property="javafiles" refid="src.files"/>

This example takes the set of files determined by the fileset (all files ending
in .java), joins them together separated by commas, and places the resulting
list into the property javafiles. The directory separator is not specified, so it
defaults to the appropriate character for the current platform. Such a list could
then be used in another task, like javadoc, that requires a comma separated list
of files.

5.2.50 Property

Description

Sets a property (by name and value), or set of properties (from file or resource)
in the project. Properties are case sensitive.

125 of 389

126 Ant Tasks

Properties are immutable: whoever sets a property first freezes it for the
rest of the build; they are most definately not variable.

There are five ways to set properties:

1. By supplying both the name and value attribute.

2. By supplying both the name and refid attribute.

3. By setting the file attribute with the filename of the property file to load.
This property file has the format as defined by the file used in the class
java.util.Properties.

4. By setting the resource attribute with the resource name of the property
file to load. This property file has the format as defined by the file used
in the class java.util.Properties.

5. By setting the environment attribute with a prefix to use. Properties will
be defined for every environment variable by prefixing the supplied name
and a period to the name of the variable.

Although combinations of these ways are possible, only one should be used
at a time. Problems might occur with the order in which properties are set, for
instance.

The value part of the properties being set, might contain references to other
properties. These references are resolved at the time these properties are set.
This also holds for properties loaded from a property file.

A list of predefined properties can be found here.

Parameters

Attribute Description Required
name the name of the property to set. No

value
location
refid

the value of the property.
Sets the property to the absolute filename
of the given file. If the value of this at-
tribute is an absolute path, it is left un-
changed (with / and
characters converted to the current plat-
forms conventions). Otherwise it is taken
as a path relative to the project’s basedir
and expanded.
Reference to an object defined elsewhere.
Only yields reasonable results for refer-
ences to PATH like structures or proper-
ties.

One of these, when
using the name at-
tribute

126 of 389

5.2 Core Tasks 127

Attribute Description Required

resource
file
environment

the resource name of the property file.
the filename of the property file.
the prefix to use when retrieving environ-
ment variables. Thus if you specify en-
vironment=”myenv” you will be able to
access OS-specific environment variables
via property names ”myenv.PATH” or
”myenv.TERM”. Note that if you supply
a property name with a final ”.” it will not
be doubled. i.e. environment=”myenv.”
will still allow access of environment
variables through ”myenv.PATH” and
”myenv.TERM”. This functionality is cur-
rently only implemented on select plat-
forms. Feel free to send patches to increase
the number of platforms this functionality
is supported on ;).
Note also that properties are case sensitive,
even if the environment variables on your
operating system are not, e.g. it will be
env.Pathnotenv.PATH on Windows 2000.

One of these, when
not using the name
attribute

classpath the classpath to use when looking up a re-
source.

No

classpathref the classpath to use when looking up a re-
source, given as reference to a ¡path¿ defined
elsewhere..

No

prefix Prefix to apply to properties loaded using file
or resource. A ”.” is appended to the prefix if
not specified.

No

Parameters specified as nested elements

classpath

Property’s classpath attribute is a PATH like structure and can also be set
via a nested classpath element.

Examples

<property name="foo.dist" value="dist"/>

sets the property foo.dist to the value ”dist”.

<property file="foo.properties"/>

reads a set of properties from a file called ”foo.properties”.

<property resource="foo.properties"/>

127 of 389

128 Ant Tasks

reads a set of properties from a resource called ”foo.properties”.

Note that you can reference a global properties file for all of your Ant builds
using the following:

<property file="${user.home}/.ant-global.properties"/>

since the ”user.home” property is defined by the Java virtual machine to be
your home directory. This technique is more appropriate for Unix than Windows
since the notion of a home directory doesn’t exist on Windows. On the JVM that
I tested, the home directory on Windows is ”C:̈. Different JVM implementations
may use other values for the home directory on Windows.

<property environment="env"/>
<echo message="Number of Processors = ${env.NUMBER_OF_PROCESSORS}"/>
<echo message="ANT_HOME is set to = ${env.ANT_HOME}"/>

reads the system environment variables and stores them in properties, prefixed
with ”env”. Note that this only works on select operating systems. Two of the
values are shown being echoed.

5.2.51 Record

Description

A recorder is a listener to the current build process that records the output to
a file.

Several recorders can exist at the same time. Each recorder is associated with
a file. The filename is used as a unique identifier for the recorders. The first call
to the recorder task with an unused filename will create a recorder (using the
parameters provided) and add it to the listeners of the build. All subsequent
calls to the recorder task using this filename will modify that recorders state
(recording or not) or other properties (like logging level).

Some technical issues: the file’s print stream is flushed for ”finished” events
(buildFinished, targetFinished and taskFinished), and is closed on a buildFin-
ished event.

128 of 389

5.2 Core Tasks 129

Parameters

Attribute Description Required
name The name of the file this logger is associated

with.
yes

action This tells the logger what to do: should it
start recording or stop? The first time that
the recorder task is called for this logfile, and
if this attribute is not provided, then the de-
fault for this attribute is ”start”. If this at-
tribute is not provided on subsequent calls,
then the state remains as previous. [Values
= start—stop, Default = no state change]

no

append Should the recorder append to a file, or create
a new one? This is only applicable the first
time this task is called for this file. [Values =
yes—no, Default=yes]

no

emacsmode Removes [task] banners like Ant’s -emacs com-
mand line switch if set to true.

no, default is false

loglevel At what logging level should this recorder
instance record to? This is not a once
only parameter (like append is) – you can
increase or decrease the logging level as
the build process continues. [Values= er-
ror—warn—info—verbose—debug, Default =
no change]

no

Examples

The following build.xml snippet is an example of how to use the recorder to
record just the <javac> task:

...
<compile >

<record name="log.txt" action="start"/>
<javac ...
<record name="log.txt" action="stop"/>

<compile/>
...

The following two calls to ¡record¿ set up two recorders: one to file ”records-
simple.log” at logging level info (the default) and one to file ”ISO.log” using
logging level of verbose.

...
<record name="records-simple.log"/>
<record name="ISO.log" loglevel="verbose"/>
...

129 of 389

130 Ant Tasks

Notes

There is some functionality that I would like to be able to add in the future.
They include things like the following:

130 of 389

5.2 Core Tasks 131

Attribute Description Required
listener A classname of a build listener to use from this

point on instead of the default listener.
no

includetarget A comma-separated list of targets to automat-
ically record. If this value is ”all”, then all
targets are recorded. [Default = all]

no

excludetarget A comma-separated list of targets to automat-
ically record. If this value is ”all”, then all
targets are recorded. [Default = all]

no

includetask
excludetask

A comma-separated list of task to auto-
matically record or not. This could be dif-
ficult as it could conflict with the include-
target/excludetarget. (e.g.: includetar-
get=”compile” excludetask=”javac”, what
should happen?)

no

action add greater flexibility to the action attribute.
Things like close to close the print stream.

no

5.2.52 Rename

Deprecated

This task has been deprecated. Use the Move task instead.

Description

Renames a given file.

Parameters

Attribute Description Required
src file to rename. Yes

dest new name of the file. Yes
replace Enable replacing of existing file (default: on). No

Examples

<rename src="foo.jar" dest="${name}-${version}.jar"/>

Renames the file foo.jar to name−version.jar (assuming name and version being
predefined properties). If a file named name−version.jar already exists, it will
be removed prior to renaming foo.jar.

131 of 389

132 Ant Tasks

5.2.53 Replace

Description

Replace is a directory based task for replacing the occurrence of a given string
with another string in selected file.

If you want to replace a text that crosses line boundaries, you must use a
nested <replacetoken> element.

Parameters

Attribute Description Required

file
dir

file for which the token should be replaced.
The base directory to use when replacing
a token in multiple files.

Exactly one of the
two.

encoding The encoding of the files upon which replace
operates.

No - defaults to de-
fault JVM encoding

token the token which must be replaced. Yes, unless a
nested replacetoken
element or the
replacefilterfile
attribute is used.

value the new value for the token. When omitted,
an empty string (””) is used.

No

summary Indicates whether a summary of the replace
operation should be produced, detailing how
many token occurrences and files were pro-
cessed

No, by default no
summary is pro-
duced

propertyFile valid property file from which properties spec-
ified using nested <replacefilter> elements
are drawn.

Yes only if prop-
erty attribute of
<replacefilter>
is used.

replacefilterfile valid property file. Each property will be
treated as a replacefilter where token is the
name of the property and value is the proper-
ties value.

No.

includes comma- or space-separated list of patterns of
files that must be included. All files are in-
cluded when omitted.

No

includesfile the name of a file. Each line of this file is taken
to be an include pattern

No

excludes comma- or space-separated list of patterns of
files that must be excluded. No files (except
default excludes) are excluded when omitted.

No

132 of 389

5.2 Core Tasks 133

Attribute Description Required
excludesfile the name of a file. Each line of this file is taken

to be an exclude pattern
No

defaultexcludes indicates whether default excludes should be
used or not (”yes”/”no”). Default excludes
are used when omitted.

No

Examples

<replace file="${src}/index.html" token="@@@" value="wombat"/>

replaces occurrences of the string ”@@@” with the string ”wombat”, in the file
${src}/index.html.

Parameters specified as nested elements

This task forms an implicit FileSet and supports all attributes of <fileset> as
well as the nested <include>, <exclude> and <patternset> elements.

If either the text you want to replace or the replacement text cross line
boundaries, you can use nested elements to specify them.

Examples

<replace dir="${src}" value="wombat">
<include name="**/*.html"/>
<replacetoken><![CDATA[multi line

token]]></replacetoken>
</replace>

replaces occurrences of the string ”multi line
ntoken” with the string ”wombat”, in all HTML files in the directory ${src}.Where
n is the platform specific line separator.

<replace file="${src}/index.html">
<replacetoken><![CDATA[two line

token]]></replacetoken>
<replacevalue><![CDATA[two line

token]]></replacevalue>
</replace>

replacefilter

In addition to allowing for multiple replacements, optional nested <replacefilter>
elements allow replacement values to be extracted from a property file. The
name of this file is specified using the <replace> attribute propertyFile.

133 of 389

134 Ant Tasks

Attribute Description Required
token The string to search for. Yes

value
property

The replacement string.
Name of the property whose value is to
serve as the replacement value.

Either may be spec-
ified, but not both.
Both can be omit-
ted, if desired.

If neither value nor property is used, the value provided using the <replace>
attribute value and/or the <replacevalue> element is used. If no value was
specified using either of these options, the token is replaced with an empty
string.

Examples

<replace
file="configure.sh"
value="defaultvalue"
propertyFile="source/name.properties">

<replacefilter
token="@token1@"/>

<replacefilter
token="@token2@"
value="value2"/>

<replacefilter
token="@token3@"
property="property.key"/>

</replace>

In file configure.sh, replace all instances of ”@token1@” with ”defaultvalue”,
all instances of ”@token2@” with ”value2”, and all instances of ”@token3@”
with the value of the property ”property.key”, as it appears in property file
src/name.properties.

Note: It is possible to use either the token/<replacetoken> and value/<replacevalue>
attributes/elements, the nested replacefilter elements, or both in the same op-
eration.

5.2.54 Rmic

Description

Runs the rmic compiler for a certain class.
Rmic can be run on a single class (as specified with the classname attribute)

or a number of classes at once (all classes below base that are neither Stub nor
Skel classes). If you want to rmic a single class and this class is a class nested
into another class, you have to specify the classname in the form Outer$$Inner
instead of Outer.Inner.

134 of 389

5.2 Core Tasks 135

It is possible to refine the set of files that are being rmiced. This can be
done with the includes, includesfile, excludes, excludesfile and defaultexcludes
attributes. With the includes or includesfile attribute you specify the files you
want to have included by using patterns. The exclude or excludesfile attribute is
used to specify the files you want to have excluded. This is also done with pat-
terns. And finally with the defaultexcludes attribute, you can specify whether
you want to use default exclusions or not. See the section on directory based
tasks, on how the inclusion/exclusion of files works, and how to write patterns.

This task forms an implicit FileSet and supports all attributes of <fileset>
(dir becomes base) as well as the nested <include>, <exclude> and <patternset>
elements.

It is possible to use different compilers. This can be selected with the
”build.rmic” property or the compiler attribute. There are three choices:

1. sun (the standard compiler of the JDK)

2. kaffe (the standard compiler of Kaffe)

3. weblogic

The miniRMI project contains a compiler implementation for this task as well,
please consult miniRMI’s documentation to learn how to use it.

135 of 389

136 Ant Tasks

Parameters

Attribute Description Required
base the location to store the compiled files. Yes

classname the class for which to run rmic. No
filtering indicates whether token filtering should take

place
No

sourcebase Pass the ”-keepgenerated” flag to rmic and
move the generated source file to the given
sourcebase directory.

No

stubversion Specify the JDK version for the generated stub
code. Specify ”1.1” to pass the ”-v1.1” option
to rmic.

No

classpath The classpath to use during compilation No
classpathref The classpath to use during compilation, given

as reference to a PATH defined elsewhere
No

includes comma- or space-separated list of patterns of
files that must be included. All files are in-
cluded when omitted.

No

includesfile the name of a file. Each line of this file is taken
to be an include pattern

No

excludes comma- or space-separated list of patterns of
files that must be excluded. No files (except
default excludes) are excluded when omitted.

No

excludesfile the name of a file. Each line of this file is taken
to be an exclude pattern

No

defaultexcludes indicates whether default excludes should be
used or not (”yes”/”no”). Default excludes
are used when omitted.

No

verify check that classes implement Remote before
handing them to rmic (default is false)

No

iiop indicates that portable (RMI/IIOP) stubs
should be generated

No

iiopopts additional arguments for IIOP class genera-
tion

No

idl indicates that IDL output files should be gen-
erated

No

idlopts additional arguments for IDL file generation No
debug generate debug info (passes -g to rmic). De-

faults to false.
No

includeAntRuntime whether to include the Ant run-time libraries;
defaults to yes.

No

includeJavaRuntime whether to include the default run-time li-
braries from the executing VM; defaults to no.

No

136 of 389

5.2 Core Tasks 137

Attribute Description Required
extdirs location of installed extensions. No
compiler The compiler implementation to use. If this

attribute is not set, the value of the build.rmic
property, if set, will be used. Otherwise, the
default compiler for the current VM will be
used. (See the above list of valid compilers.)

No

Parameters specified as nested elements

classpath and extdirs

Rmic’s classpath and extdirs attributes are PATH like structure and can also
be set via a nested classpath and extdirs elements.

compilerarg

You can specify additional command line arguments for the compiler with
nested <compilerarg> elements. These elements are specified like Command-
line Arguments but have an additional attribute that can be used to enable
arguments only if a given compiler implementation will be used.
Attribute Description Required

value
line
file
path

See Command-line Arguments. Exactly one of
these.

compiler Only pass the specified argument if the chosen
compiler implementation matches the value of
this attribute. Legal values are the same as
those in the above list of valid compilers.)

No

Examples

<rmic classname="com.xyz.FooBar" base="${build}/classes"/>

runs the rmic compiler for the class com.xyz.FooBar. The compiled files will be
stored in the directory ${build}/classes.

<rmic base="${build}/classes" includes="**/Remote*.class"/>

runs the rmic compiler for all classes with .class files below ${build}/classes
whose classname starts with Remote. The compiled files will be stored in the
directory ${build}/classes.

5.2.55 Sequential

Description

Sequential is a container task - it can contain other Ant tasks. The nested tasks
are simply executed in sequence. Sequential’s primary use is to support the

137 of 389

138 Ant Tasks

sequential execution of a subset of tasks within the parallel task
The sequential task has no attributes and does not support any nested ele-

ments apart from Ant tasks. Any valid Ant task may be embedded within the
sequential task.

Example

<parallel>
<wlrun ... >
<sequential>

<sleep seconds="30"/>
<junit ... >
<wlstop/>

</sequential>
</parallel>

This example shows how the sequential task is used to execute three tasks in
sequence, while another task is being executed in a separate thread.

5.2.56 SignJar

Description

Signs jar or zip files with the javasign command line tool. The tool detailed
dependency checking: files are only signed if they are not signed. The signjar
attribute can point to the file to generate; if this file exists then its modification
date is used as a cue as to whether to resign any JAR file. Note: Requires Java
1.2 or later.

Parameters

Attribute Description Required
jar the jar file to sign Yes, unless nested

filesets have been
used.

alias the alias to sign under Yes.
storepass password for keystore integrity. Yes.
keystore keystore location No
storetype keystore type No
keypass password for private key (if different) No
sigfile name of .SF/.DSA file No
signedjar name of signed JAR file No
verbose (true — false) verbose output when signing No; default false
internalsf (true — false) include the .SF file inside the

signature block
No; default false

138 of 389

5.2 Core Tasks 139

Attribute Description Required
sectionsonly (true — false) don’t compute hash of entire

manifest
No; default false

lazy flag to control whether the presence of a sig-
nature file means a JAR is signed

No; default false

maxmemory Specifies the maximum memory the jarsigner
VM will use. Specified in the style of standard
java memory specs (e.g. 128m = 128 MBytes)

No

Parameters as nested elements

Attribute Description Required
fileset fileset of JAR files to sign. Will be ignored if

the jar attribute of the task has been set.
No

Examples

<signjar jar="${dist}/lib/ant.jar" alias="apache-group" storepass="secret"/>

signs the ant.jar with alias ”apache-group” accessing the keystore and private
key via ”secret” password.

5.2.57 Sleep

Description

A task for sleeping a short period of time, useful when a build or deployment
process requires an interval between tasks.

Parameters

Attribute Description Required
hours hours to to add to the sleep time No

minutes minutes to add to the sleep time No
seconds seconds to add to the sleep time No
milliseconds milliseconds to add to the sleep time No
failonerror flag controlling whether to break the build on

an error.
No

The sleep time is the sum of specified values, hours, minutes seconds and
milliseconds. A negative value can be supplied to any of them provided the
total sleep time is positive

Note that sleep times are always hints to be interpred by the OS how it
feels - small times may either be ignored or rounded up to a minimum timeslice.
Note also that the system clocks often have a fairly low granularity too, which
complicates measuring how long a sleep actually took.

139 of 389

140 Ant Tasks

Examples

<sleep milliseconds="10"/>

Sleep for about 10 mS.

<sleep seconds="2"/>

Sleep for about 2 seconds.

<sleep hours="1" minutes="-59" seconds="-58"/>

Sleep for one hour less 59:58, or two seconds again

<sleep/>

Sleep for no time at all. This may yield the CPU time to another thread or
process.

5.2.58 Sql

Description

Executes a series of SQL statements via JDBC to a database. Statements can
either be read in from a text file using the src attribute or from between the
enclosing SQL tags.

Multiple statements can be provided, separated by semicolons (or the defined
delimiter). Individual lines within the statements can be commented using
either –, // or REM at the start of the line.

The autocommit attribute specifies whether auto-commit should be turned
on or off whilst executing the statements. If auto-commit is turned on each
statement will be executed and committed. If it is turned off the statements
will all be executed as one transaction.

The onerror attribute specifies how to proceed when an error occurs during
the execution of one of the statements. The possible values are: continue exe-
cution, only show the error; stop execution and commit transaction; and abort
execution and transaction and fail task.

Parameters

Attribute Description Required
driver Class name of the jdbc driver Yes

url Database connection url Yes
userid Database user name Yes
password Database password Yes
src File containing SQL statements Yes, unless state-

ments enclosed
within tags

140 of 389

5.2 Core Tasks 141

Attribute Description Required
encoding The encoding of the files containing SQL

statements
No - defaults to de-
fault JVM encoding

delimiter String that separates SQL statements No, default ”;”
autocommit Auto commit flag for database connection (de-

fault false)
No, default ”false”

print Print result sets from the statements (default
false)

No, default ”false”

showheaders Print headers for result sets from the state-
ments (default true)

No, default ”true”

output Output file for result sets (defaults to Sys-
tem.out)

No (print to Sys-
tem.out by default)

append whether output should be appended to or
overwrite an existing file. Defaults to false.

No

classpath Classpath used to load driver No (use system
classpath)

classpathref The classpath to use, given as a reference to a
path defined elsewhere.

No (use system
classpath)

onerror Action to perform when statement fails: con-
tinue, stop, abort

No, default ”abort”

rdbms Execute task only if this rdbms No (no restriction)
version Execute task only if rdbms version match No (no restriction)
caching Should the task cache loaders and the driver? No (default=true)

Parameters specified as nested elements

transaction

Use nested <transaction> elements to specify multiple blocks of commands
to the executed executed in the same connection but different transactions. This
is particularly useful when there are multiple files to execute on the same schema.
Attribute Description Required
src File containing SQL statements Yes, unless state-

ments enclosed
within tags

fileset

You can specify multiple source files via nested fileset elements. Each file of
the fileset will be run in a transaction of its own, the order by which the files of
a single fileset will be executed is not defined.

classpath

Sql’s classpath attribute is a PATH like structure and can also be set via a
nested classpath element. It is used to load the JDBC classes.

Examples

141 of 389

142 Ant Tasks

<sql
driver="org.database.jdbcDriver"
url="jdbc:database-url"
userid="sa"
password="pass"
src="data.sql"

/>

Connects to the database given in url as the sa user using the org.database.jdbcDriver
and executes the SQL statements contained within the file data.sql

<sql
driver="org.database.jdbcDriver"
url="jdbc:database-url"
userid="sa"
password="pass"
>

insert
into table some_table
values(1,2,3,4);

truncate table some_other_table;
</sql>

Connects to the database given in url as the sa user using the org.database.jdbcDriver
and executes the two SQL statements inserting data into some table and trun-
cating some other table

Note that you may want to enclose your statements in <![CDATA[...]]>
sections so you don’t need to escape <, > & or other special characters. For
example:

<sql
driver="org.database.jdbcDriver"
url="jdbc:database-url"
userid="sa"
password="pass"
><![CDATA[

update some table set column1 = column1 + 1 where column2 < 42;

]]></sql>

The following connects to the database given in url as the sa user using the
org.database.jdbcDriver and executes the SQL statements contained within the
files data1.sql, data2.sql and data3.sql and then executes the truncate operation
on some other table.

<sql
driver="org.database.jdbcDriver"

142 of 389

5.2 Core Tasks 143

url="jdbc:database-url"
userid="sa"
password="pass" >

<transaction src="data1.sql"/>
<transaction src="data2.sql"/>
<transaction src="data3.sql"/>
<transaction>

truncate table some_other_table;
</transaction>

</sql>

The following example does the same as (and may execute additional SQL files
if there are more files matching the pattern data*.sql) but doesn’t guarantee
that data1.sql will be run before data2.sql.

<sql
driver="org.database.jdbcDriver"
url="jdbc:database-url"
userid="sa"
password="pass">

<fileset dir=".">
<include name="data*.sql"/>

</fileset>
<transaction>

truncate table some_other_table;
</transaction>

</sql>

The following connects to the database given in url as the sa user using the
org.database.jdbcDriver and executes the SQL statements contained within the
file data.sql, with output piped to outputfile.txt, searching /some/jdbc.jar as
well as the system classpath for the driver class.

<sql
driver="org.database.jdbcDriver"
url="jdbc:database-url"
userid="sa"
password="pass"
src="data.sql"
print="yes"
output="outputfile.txt"
>

<classpath>
<pathelement location="/some/jdbc.jar"/>

</classpath>
</sql>

The following will only execute if the RDBMS is ”oracle” and the version starts
with ”8.1.”

143 of 389

144 Ant Tasks

<sql
driver="org.database.jdbcDriver"
url="jdbc:database-url"
userid="sa"
password="pass"
src="data.sql"
rdbms="oracle"
version="8.1."
>

insert
into table some_table
values(1,2,3,4);

truncate table some_other_table;
</sql>

5.2.59 Xslt/Style

Description

Process a set of documents via XSLT.
This is useful for building views of XML based documentation, or for gen-

erating code.
Note: This task depends on external libraries not included in the Ant dis-

tribution. See Library Dependencies for more information.
It is possible to refine the set of files that are being processed. This can be

done with the includes, includesfile, excludes, excludesfile and defaultexcludes
attributes. With the includes or includesfile attribute you specify the files you
want to have included by using patterns. The exclude or excludesfile attribute is
used to specify the files you want to have excluded. This is also done with pat-
terns. And finally with the defaultexcludes attribute, you can specify whether
you want to use default exclusions or not. See the section on directory based
tasks, on how the inclusion/exclusion of files works, and how to write patterns.

This task forms an implicit FileSet and supports all attributes of <fileset>
(dir becomes basedir) as well as the nested <include>, <exclude> and <patternset>
elements.

This task supports the use of a nested <param> element which is used to
pass values to an ¡xsl:param¿ declaration.

This task supports the use of a nested xmlcatalog element which is used to
perform Entity and URI resolution

<style> and <xslt> refer to the same Ant task and can be used interchange-
ably.

If you want to use Xalan-J 1 or XSL:P, you also need Ant’s optional.jar

Parameters

144 of 389

5.2 Core Tasks 145

Attribute Description Required
basedir where to find the source XML file, default is

the project’s basedir.
No

destdir directory in which to store the results. Yes, unless in and
out have been spec-
ified.

extension desired file extension to be used for the tar-
gets. If not specified, the default is ”.html”.

No

style name of the stylesheet to use - given either rel-
ative to the project’s basedir or as an absolute
path DEPRECATED - can be specified as a
path relative to the basedir attribute of this
task as well.

Yes

classpath the classpath to use when looking up the
XSLT processor.

No

classpathref the classpath to use, given as reference to a
path defined elsewhere.

No

force Recreate target files, even if they are newer
than their corresponding source files or the
stylesheet.

No; default is false

processor name of the XSLT processor to use. Per-
missible values are ”trax” for a TraX compli-
ant processor (ie JAXP interface implemen-
tation such as Xalan 2 or Saxon), ”xslp” for
the XSL:P processor, ”xalan” for the Apache
XML Xalan (version 1) processor the name
of an arbitrary XSLTLiaison class. Defaults
to trax, followed by xalan and then xslp (in
that order). The first one found in your class
path is the one that is used. DEPRECATED -
XSL:P and xalan are deprecated and no more
supported..

No

145 of 389

146 Ant Tasks

Attribute Description Required
includes comma- or space-separated list of patterns of

files that must be included. All files are in-
cluded when omitted.

No

includesfile the name of a file. Each line of this file is taken
to be an include pattern

No

excludes comma- or space-separated list of patterns of
files that must be excluded. No files (except
default excludes) are excluded when omitted.

No

excludesfile the name of a file. Each line of this file is taken
to be an exclude pattern

No

defaultexcludes indicates whether default excludes should be
used or not (”yes”/”no”). Default excludes
are used when omitted.

No

in specifies a single XML document to be styled.
Should be used with the out attribute.

No

out specifies the output name for the styled result
from the in attribute.

No

scanincludeddirectories If any directories are matched by the in-
cludes/excludes patterns, try to transform all
files in these directories. Default is true

No

reloadstylesheet Control whether the stylesheet transformer is
created anew for every transform opertaion. If
you set this to true, performance may suffer,
but you may work around a bug in certain
Xalan-J versions. Default is false. Since Ant
1.5.2.

No

Parameters specified as nested elements

classpath

The classpath to load the processor from can be specified via a nested ¡class-
path¿, as well - that is, a path-like structure.

xmlcatalog

The xmlcatalog element is used to perform Entity and URI resolution.

param

Param is used to pass a parameter to the XSL stylesheet.

Parameters

146 of 389

5.2 Core Tasks 147

Attribute Description Required
name Name of the XSL parameter Yes

expression XSL expression to be placed into the param.
To pass a text value into the style sheet it
needs to be escaped using single quotes.

Yes

outputproperty (’trax’ processors only)

Used to specify how you wish the result tree to be output as specified in the
XSLT specifications.

Parameters

Attribute Description Required
name Name of the property Yes

value value of the property. Yes

Examples

<style basedir="doc" destdir="build/doc"
extension=".html" style="style/apache.xsl"/>

Using an xmlcatalog

<xslt basedir="doc" destdir="build/doc"
extension=".html" style="style/apache.xsl">

<xmlcatalog refid="mycatalog"/>
</xslt>

<xslt basedir="doc" destdir="build/doc"
extension=".html" style="style/apache.xsl">
<xmlcatalog>

<dtd
publicId="-//ArielPartners//DTD XML Article V1.0//EN"
location="com/arielpartners/knowledgebase/dtd/article.dtd"/>

</xmlcatalog>
</xslt>

Using XSL parameters

<xslt basedir="doc" destdir="build/doc"
extension=".html" style="style/apache.xsl">

<param name="date" expression="07-01-2000"/>
</xslt>

Then if you declare a global parameter ”date” with the top-level element ¡xsl:param
name=”date”/¿, the variable $date will subsequently have the value 07-01-2000.

Using output properties

147 of 389

148 Ant Tasks

<xslt in="doc.xml" out="build/doc/output.xml"
style="style/apache.xsl">

<outputproperty name="method" value="xml";/>
<outputproperty name="standalone" value="yes"/>
<outputproperty name="encoding" value="iso8859_1"/>
<outputproperty name="indent" value="yes"/>

</xslt>

5.2.60 Tar

Description

Creates a tar archive.

The basedir attribute is the reference directory from where to tar.

This task is a directory based task and, as such, forms an implicit Fileset.
This defines which files, relative to the basedir, will be included in the archive.
The tar task supports all the attributes of Fileset to refine the set of files to be
included in the implicit fileset.

In addition to the implicit fileset, the tar task supports nested filesets. These
filesets are extended to allow control over the access mode, username and group-
name to be applied to the tar entries. This is useful, for example, when preparing
archives for Unix systems where some files need to have execute permission.

Early versions of tar did not support path lengths greater than 100 charac-
ters. Modern versions of tar do so, but in incompatible ways. The behaviour of
the tar task when it encounters such paths is controlled by the longfile attribute.
If the longfile attribute is set to fail, any long paths will cause the tar task to
fail. If the longfile attribute is set to truncate, any long paths will be truncated
to the 100 character maximum length prior to adding to the archive. If the
value of the longfile attribute is set to omit then files containing long paths will
be omitted from the archive. Either option ensures that the archive can be
untarred by any compliant version of tar. If the loss of path or file information
is not acceptable, and it rarely is, longfile may be set to the value gnu. The tar
task will then produce a GNU tar file which can have arbitrary length paths.
Note however, that the resulting archive will only be able to be untarred with
GNU tar. The default for the longfile attribute is warn which behaves just like
the gnu option except that it produces a warning for each file path encountered
that does not match the limit.

This task can perform compression by setting the compression attribute to
”gzip” or ”bzip2”.

148 of 389

5.2 Core Tasks 149

Parameters

Attribute Description Required
destfile the tar-file to create. Yes

basedir the directory from which to tar the files. No
longfile Determines how long files (¿100 chars) are to

be handled. Allowable values are ”truncate”,
”fail”, ”warn”, ”omit” and ”gnu”. Default is
”warn”.

No

includes comma- or space-separated list of patterns of
files that must be included. All files are in-
cluded when omitted.

No

includesfile the name of a file. Each line of this file is taken
to be an include pattern

No

excludes comma- or space-separated list of patterns of
files that must be excluded. No files (except
default excludes) are excluded when omitted.

No

excludesfile the name of a file. Each line of this file is taken
to be an exclude pattern

No

defaultexcludes indicates whether default excludes should be
used or not (”yes”/”no”). Default excludes
are used when omitted.

No

compression compression method. Allowable values are
”none”, ”gzip” and ”bzip2”. Default is
”none”.

No

Nested Elements

The tar task supports nested tarfileset elements. These are extended Filesets
which, in addition to the standard fileset elements, support three additional
attributes

149 of 389

150 Ant Tasks

Attribute Description Required
mode A 3 digit octal string, specify the user, group

and other modes in the standard Unix fashion
No

username The username for the tar entry. This is not
the same as the UID, which is not currently
set by the tar task.

No

group The groupname for the tar entry. This is not
the same as the GID, which is not currently
set by the tar task.

No

prefix If the prefix attribute is set, all files in the file-
set are prefixed with that path in the archive.

No

fullpath If the fullpath attribute is set, the file in the
fileset is written with that path in the archive.
The prefix attribute, if specified, is ignored. It
is an error to have more than one file specified
in such a fileset.

No

preserveLeadingSlashes Indicates whether leading ‘/’s should be pre-
served in the file names. Default is false.

No

Examples

<tar tarfile="${dist}/manual.tar" basedir="htdocs/manual"/>
<gzip zipfile="${dist}/manual.tar.gz" src="${dist}/manual.tar"/>

tars all files in the htdocs/manual directory into a file called manual.tar in the
${dist} directory, then applies the gzip task to compress it.

<tar destfile="${dist}/manual.tar"
basedir="htdocs/manual"
excludes="mydocs/**, **/todo.html"

/>

tars all files in the htdocs/manual directory into a file called manual.tar in the
${dist} directory. Files in the directory mydocs, or files with the name todo.html
are excluded.

<tar destfile="${basedir}/docs.tar">
<tarfileset dir="${dir.src}/docs"

fullpath="/usr/doc/ant/README"
preserveLeadingSlashes="true">

<include name="readme.txt"/>
</tarfileset>
<tarfileset dir="${dir.src}/docs"

prefix="/usr/doc/ant"
preserveLeadingSlashes="true">

<include name="*.html"/>
</tarfileset>

</tar>

150 of 389

5.2 Core Tasks 151

Writes the file docs/readme.txt as /usr/doc/ant/README into the archive. All
*.html files in the docs directory are prefixed by /usr/doc/ant, so for example
docs/index.html is written as /usr/doc/ant/index.html to the archive.

<tar longfile="gnu"
destfile="${dist.base}/${dist.name}-src.tar" >

<tarfileset dir="${dist.name}/.." mode="755" username="ant" group="ant">
<include name="${dist.name}/bootstrap.sh"/>
<include name="${dist.name}/build.sh"/>

</tarfileset>
<tarfileset dir="${dist.name}/.." username="ant" group="ant">

<include name="${dist.name}/**"/>
<exclude name="${dist.name}/bootstrap.sh"/>
<exclude name="${dist.name}/build.sh"/>

</tarfileset>
</tar>

This example shows building a tar which uses the GNU extensions for long
paths and where some files need to be marked as executable (mode 755) and
the rest are use the default mode (read-write by owner). The first fileset selects
just the executable files. The second fileset must exclude the executable files
and include all others.

Note: The tar task does not ensure that a file is only selected by one fileset.
If the same file is selected by more than one fileset, it will be included in the
tar file twice, with the same path.

Note: The patterns in the include and exclude elements are considered to
be relative to the corresponding dir attribute as with all other filesets. In the
example above, ${dist.name} is not an absolute path, but a simple name of a
directory, so ${dist.name} is a valid path relative to ${dist.name}/...

5.2.61 Taskdef

Description

Adds a task definition to the current project, such that this new task can be
used in the current project. Two attributes are needed, the name that identifies
this task uniquely, and the full name of the class (including the packages) that
implements this task.

You can also define a group of tasks at once using the file or resource at-
tributes. These attributes point to files in the format of Java property files.
Each line defines a single task in the format:

taskname=fully.qualified.java.classname

Taskdef should be used to add your own tasks to the system. See also ”Writing
your own task”.

Parameters

151 of 389

152 Ant Tasks

Attribute Description Required
name the name of the task Yes, unless file or

resource have been
specified.

classname the full class name implementing the task Yes, unless file or
resource have been
specified.

file Name of the property file to load
taskname/classname pairs from.

No

resource Name of the property resource to load
taskname/classname pairs from.

No

classpath the classpath to use when looking up class-
name or resource.

No

classpathref Reference to a classpath to use when looking
up classname or resource.

No

loaderRef the name of the loader that is used to load the
class, constructed from the specified classpath.
Use this to allow multiple tasks/types to be
loaded with the same loader, so they can call
each other. (introduced in ant1.5)

No

Parameters specified as nested elements

classpath

Taskdef’s classpath attribute is a PATH like structure and can also be set
via a nested classpath element.

Examples

<taskdef name="myjavadoc" classname="com.mydomain.JavadocTask"/>

makes a task called myjavadoc available to Ant. The class com.mydomain.JavadocTask
implements the task.

5.2.62 Tempfile

Description

This task sets a property to the name of a temporary file. Unlike the Java1.2
method to create a temporary file, this task does work with Java1.1. It does
not actually create the temporary file, but it does guarantee that the file did
not exist when the task was executed.

Parameters

152 of 389

5.2 Core Tasks 153

Attribute Description Required
destdir The directory the temporary file should be lo-

cated in. If not set, the current directory is
used.

No

prefix A prefix for the temporary file name. No
property The name of the property to set with the value

of the temporary file name.
Yes

suffix A suffix for the temporary file name. No

Examples

<tempfile property="temp.file"/>

will set temp.file to the name of a new temporary file.

<tempfile property="temp.file" suffix=".xml"/>

will set temp.file to the name of a new temporary file with a suffix of .xml.

<tempfile property="temp.file" destdir="build"/>

will set temp.file to the name of a new temporary file located in the build sub-
directory.

5.2.63 Touch

Description

Changes the modification time of a file and possibly creates it at the same time.
In addition to working with a single file, this Task can also work a Fileset (which
also includes directories).

For JDK 1.1 only the creation of new files with a modification time of now
works, all other cases will emit a warning.

Parameters

Attribute Description Required
file the name of the file unless a nested

fileset element has
been specified.

millis specifies the new modification time of the file
in milliseconds since midnight Jan 1 1970

No

datetime specifies the new modification time of the
file in the format MM/DD/YYYY HH:MM
AM or PM.

No

153 of 389

154 Ant Tasks

Attribute Description Required
If both millis and datetime are omitted the current time is assumed.

Examples

<touch file="myfile"/>

creates myfile if it doesn’t exist and changes the modification time to the current
time.

<touch file="myfile" datetime="06/28/2000 2:02 pm"/>

creates myfile if it doesn’t exist and changes the modification time to Jun, 28
2000 2:02 pm (14:02 for those used to 24 hour times).

<touch datetime="09/10/1974 4:30 pm">
<fileset dir="src_dir"/>

</touch>

changes the modification time to Oct, 09 1974 4:30 pm of all files and directories
found in src dir.

5.2.64 TStamp

Description

Sets the DSTAMP, TSTAMP, and TODAY properties in the current project.
By default, the DSTAMP property is in the format ”yyyyMMdd”, TSTAMP is
in the format ”hhmm”, and TODAY is in the format ”MMMM dd yyyy”. Use
the nested ¡format¿ element to specify a different format.

These properties can be used in the build-file, for instance, to create time-
stamped filenames, or used to replace placeholder tags inside documents to
indicate, for example, the release date. The best place for this task is probably
in an initialization target.

Parameters

Attribute Description Required
prefix Prefix used for all properties set. The default

is no prefix.
No

Nested Elements

The Tstamp task supports a ¡format¿ nested element that allows a property to
be set to the current date and time in a given format. The date/time patterns
are as defined in the Java SimpleDateFormat class. The format element also
allows offsets to be applied to the time to generate different time values.

154 of 389

5.2 Core Tasks 155

Attribute Description Required
property The property to receive the date/time string

in the given pattern.
Yes

pattern The date/time pattern to be used. The values
are as defined by the Java SimpleDateFormat
class.

Yes

timezone The timezone to use for displaying time. The
values are as defined by the Java TimeZone
class.

No

offset The numeric offset to the current time No
unit The unit of the offset to be applied to the cur-

rent time. Valid Values are

• millisecond

• second

• minute

• hour

• day

• week

• month

• year

No

locale The locale used to create date/time string.
The general form is ”language, country, vari-
ant” but either variant or variant and country
may be omitted. For more information please
refer to documentation for the Locale class.

No

Examples

<tstamp/>

sets the standard DSTAMP, TSTAMP, and TODAY properties according to the
default formats.

<tstamp>
<format property="TODAY_UK" pattern="d-MMMM-yyyy" locale="en"/>

</tstamp>

sets the standard properties as well as the property TODAY UK with the date/time
pattern ”d-MMMM-yyyy” using English locale (eg. 21-May-2001).

<tstamp>

155 of 389

156 Ant Tasks

<format property="touch.time" pattern="MM/dd/yyyy hh:mm aa"
offset="-5" unit="hour"/>

</tstamp>

Creates a timestamp, in the property touch.time, 5 hours before the current
time. The format in this example is suitable for use with the ¡touch¿ task. The
standard properties are set also.

<tstamp prefix="start"/>

Sets three properties with the standard formats, prefixed with ”start.”: start.DSTAMP,
start.TSTAMP, and start.TODAY.

5.2.65 Typedef

Description

Adds a data type definition to the current project, such that this new type
can be used in the current project. Two attributes are needed, the name that
identifies this data type uniquely, and the full name of the class (including the
packages) that implements this type.

You can also define a group of data types at once using the file or resource
attributes. These attributes point to files in the format of Java property files.
Each line defines a single data type in the format:

typename=fully.qualified.java.classname

Typedef should be used to add your own types to the system. Data types are
things like paths or filesets that can be defined at the project level and referenced
via their ID attribute.

Custom data types usually need custom tasks to put them to good use.

Parameters

Attribute Description Required
name the name of the data type Yes, unless file or

resource have been
specified.

classname the full class name implementing the data type Yes, unless file or
resource have been
specified.

file Name of the property file to load type-
name/classname pairs from.

No

resource Name of the property resource to load type-
name/classname pairs from.

No

classpath the classpath to use when looking up class-
name.

No

156 of 389

5.2 Core Tasks 157

Attribute Description Required
loaderRef the name of the loader that is used to load the

class, constructed from the specified classpath.
Use this to allow multiple tasks/types to be
loaded with the same loader, so they can call
each other. (introduced in ant1.5)

No

Parameters specified as nested elements

classpath

Typedef’s classpath attribute is a PATH like structure and can also be set
via a nested classpath element.

Examples

<typedef name="urlset" classname="com.mydomain.URLSet"/>

makes a data type called urlset available to Ant. The class com.mydomain.URLSet
implements this type.

5.2.66 Unjar/Untar/Unwar/Unzip

Description

Unzips a zip-, war-, tar- or jarfile.
For JDK 1.1 ”last modified time” field is set to current time instead of being

carried from the archive file.
PatternSets are used to select files to extract from the archive. If no pat-

ternset is used, all files are extracted.
FileSets may be used used to select archived files to perform unarchival upon.
File permissions will not be restored on extracted files.
The untar task recognizes the long pathname entries used by GNU tar.

Parameters

Attribute Description Required
src archive file to expand. Yes, if filesets are

not used.
dest directory where to store the expanded files. Yes
overwrite Overwrite files, even if they are newer than

the corresponding entries in the archive (true
or false, default is true).

No

compression compression method for untar. Allowable val-
ues are ”none”, ”gzip” and ”bzip2”. Default
is ”none”.

No

157 of 389

158 Ant Tasks

Attribute Description Required

Examples

<unzip src="${tomcat_src}/tools-src.zip" dest="${tools.home}"/>

<gunzip src="tools.tar.gz"/>
<untar src="tools.tar" dest="${tools.home}"/>

<unzip src="${tomcat_src}/tools-src.zip"
dest="${tools.home}">

<patternset>
<include name="**/*.java"/>
<exclude name="**/Test*.java"/>

</patternset>
</unzip>

<unzip dest="${tools.home}">
<patternset>

<include name="**/*.java"/>
<exclude name="**/Test*.java"/>

</patternset>
<fileset dir=".">

<include name="**/*.zip"/>
<exclude name="**/tmp*.zip"/>

</fileset>
</unzip>

5.2.67 Untar

Description

Unzips a zip-, war-, tar- or jarfile.
For JDK 1.1 ”last modified time” field is set to current time instead of being

carried from the archive file.
PatternSets are used to select files to extract from the archive. If no pat-

ternset is used, all files are extracted.
FileSets may be used used to select archived files to perform unarchival upon.
File permissions will not be restored on extracted files.
The untar task recognizes the long pathname entries used by GNU tar.

Parameters

Attribute Description Required
src archive file to expand. Yes, if filesets are

not used.

158 of 389

5.2 Core Tasks 159

Attribute Description Required
dest directory where to store the expanded files. Yes
overwrite Overwrite files, even if they are newer than

the corresponding entries in the archive (true
or false, default is true).

No

compression compression method for untar. Allowable val-
ues are ”none”, ”gzip” and ”bzip2”. Default
is ”none”.

No

Examples

<unzip src="${tomcat_src}/tools-src.zip" dest="${tools.home}"/>

<gunzip src="tools.tar.gz"/>
<untar src="tools.tar" dest="${tools.home}"/>

<unzip src="${tomcat_src}/tools-src.zip"
dest="${tools.home}">

<patternset>
<include name="**/*.java"/>
<exclude name="**/Test*.java"/>

</patternset>
</unzip>

<unzip dest="${tools.home}">
<patternset>

<include name="**/*.java"/>
<exclude name="**/Test*.java"/>

</patternset>
<fileset dir=".">

<include name="**/*.zip"/>
<exclude name="**/tmp*.zip"/>

</fileset>
</unzip>

5.2.68 Unwar

Description

Unzips a zip-, war-, tar- or jarfile.
For JDK 1.1 ”last modified time” field is set to current time instead of being

carried from the archive file.
PatternSets are used to select files to extract from the archive. If no pat-

ternset is used, all files are extracted.
FileSets may be used used to select archived files to perform unarchival upon.
File permissions will not be restored on extracted files.
The untar task recognizes the long pathname entries used by GNU tar.

159 of 389

160 Ant Tasks

Parameters

160 of 389

5.2 Core Tasks 161

Attribute Description Required
src archive file to expand. Yes, if filesets are

not used.
dest directory where to store the expanded files. Yes
overwrite Overwrite files, even if they are newer than

the corresponding entries in the archive (true
or false, default is true).

No

compression compression method for untar. Allowable val-
ues are ”none”, ”gzip” and ”bzip2”. Default
is ”none”.

No

Examples

<unzip src="${tomcat_src}/tools-src.zip" dest="${tools.home}"/>

<gunzip src="tools.tar.gz"/>
<untar src="tools.tar" dest="${tools.home}"/>

<unzip src="${tomcat_src}/tools-src.zip"
dest="${tools.home}">

<patternset>
<include name="**/*.java"/>
<exclude name="**/Test*.java"/>

</patternset>
</unzip>

<unzip dest="${tools.home}">
<patternset>

<include name="**/*.java"/>
<exclude name="**/Test*.java"/>

</patternset>
<fileset dir=".">

<include name="**/*.zip"/>
<exclude name="**/tmp*.zip"/>

</fileset>
</unzip>

5.2.69 Unzip

Unzips a zip-, war-, tar- or jarfile.
For JDK 1.1 ”last modified time” field is set to current time instead of being

carried from the archive file.
PatternSets are used to select files to extract from the archive. If no pat-

ternset is used, all files are extracted.
FileSets may be used used to select archived files to perform unarchival upon.
File permissions will not be restored on extracted files.

161 of 389

162 Ant Tasks

The untar task recognizes the long pathname entries used by GNU tar.

Parameters

Attribute Description Required
src archive file to expand. Yes, if filesets are

not used.
dest directory where to store the expanded files. Yes
overwrite Overwrite files, even if they are newer than

the corresponding entries in the archive (true
or false, default is true).

No

compression compression method for untar. Allowable val-
ues are ”none”, ”gzip” and ”bzip2”. Default
is ”none”.

No

Examples

<unzip src="${tomcat_src}/tools-src.zip" dest="${tools.home}"/>

<gunzip src="tools.tar.gz"/>
<untar src="tools.tar" dest="${tools.home}"/>

<unzip src="${tomcat_src}/tools-src.zip"
dest="${tools.home}">

<patternset>
<include name="**/*.java"/>
<exclude name="**/Test*.java"/>

</patternset>
</unzip>

<unzip dest="${tools.home}">
<patternset>

<include name="**/*.java"/>
<exclude name="**/Test*.java"/>

</patternset>
<fileset dir=".">

<include name="**/*.zip"/>
<exclude name="**/tmp*.zip"/>

</fileset>
</unzip>

5.2.70 Uptodate

Description

Sets a property if a target file or set of target files is more up-to-date than a
source file or set of source files. A single source file is specified using the srcfile

162 of 389

5.2 Core Tasks 163

attribute. A set of source files is specified using the nested ¡srcfiles¿ elements.
These are FileSets, whereas multiple target files are specified using a nested
¡mapper¿ element.

By default, the value of the property is set to true if the timestamp of the
target file(s) is more recent than the timestamp of the corresponding source
file(s). You can set the value to something other than the default by specifying
the value attribute.

If a ¡srcfiles¿ element is used, without also specifying a ¡mapper¿ element,
the default behavior is to use a merge mapper, with the to attribute set to the
value of the targetfile attribute.

Normally, this task is used to set properties that are useful to avoid target
execution depending on the relative age of the specified files.

Parameters

Attribute Description Required
property The name of the property to set. Yes

value The value to set the property to. No; defaults to
true.

srcfile The file to check against the target file(s). Yes, unless a nested
¡srcfiles¿ element is
present.

targetfile The file for which we want to determine the
status.

Yes, unless a nested
¡mapper¿ element
is present.

Parameters specified as nested elements

srcfiles

The nested <srcfiles> element allows you to specify a set of files to check
against the target file(s).

Note: You can specify either the srcfile attribute or nested <srcfiles>
elements, but not both.

mapper

The nested <mapper> element allows you to specify a set of target files to
check for being up-to-date with respect to a set of source files.

Examples

<uptodate property="xmlBuild.notRequired"
targetfile="${deploy}\xmlClasses.jar" >
<srcfiles dir= "${src}/xml" includes="**/*.dtd"/>

</uptodate>

163 of 389

164 Ant Tasks

sets the property xmlBuild.notRequired to true if the ${deploy}/xmlClasses.jar
file is more up-to-date than any of the DTD files in the ${src}/xml directory.

This can be written as:

<uptodate property="xmlBuild.notRequired">
<srcfiles dir= "${src}/xml" includes="**/*.dtd"/>
<mapper type="merge" to="${deploy}\xmlClasses.jar"/>

</uptodate>

as well. The xmlBuild.notRequired property can then be used in a <target>
tag’s unless attribute to conditionally run that target. For example, running
the following target:

<target name="xmlBuild" depends="chkXmlBuild" unless="xmlBuild.notRequired">
...

</target>

will first run the chkXmlBuild target, which contains the ¡uptodate¿ task that
determines whether xmlBuild.notRequired gets set. The property named in the
unless attribute is then checked for being set/not set. If it did get set (ie., the
jar file is up-to-date), then the xmlBuild target won’t be run.

The following example shows a single source file being checked against a
single target file:

<uptodate property="isUpToDate"
srcfile="/usr/local/bin/testit"
targetfile="${build}/.flagfile"/>

sets the property isUpToDate to true if /usr/local/bin/testit is newer than
${build}/.flagfile.

5.2.71 Waitfor

Description

Blocks execution until a set of specified conditions become true. This is intended
to be used with the parallel task to synchronize a set of processes.

The conditions to wait for are defined in nested elements, if multiple condi-
tions are specified, then the task will wait until all conditions are true..

If both maxwait and maxwaitunit are not specified, the maxwait is 3 minutes
(180000 milliseconds).

If the timeoutproperty attribute has been set, a property of that name will
be created if the condition didn’t come true within the specified time.

Parameters

164 of 389

5.2 Core Tasks 165

Attribute Description Required
maxwait The maximum amount of time to wait for all

the required conditions to become true before
failing the task. Defaults to 180000 maxwait-
units.

No

maxwaitunit The unit of time that must be used to interpret
the value of the maxwait attribute. Defaults
to millisecond. Valid Values are

• millisecond

• second

• minute

• hour

• day

• week

No

checkevery The amount of time to wait between each test
of the conditions. Defaults to 500 checkev-
eryunits.

No

checkeveryunit The unit of time that must be used to interpret
the value of the checkevery attribute. Defaults
to millisecond. Valid Values are

• second

• minute

• hour

• day

• week

No

165 of 389

166 Ant Tasks

Attribute Description Required
timeoutproperty the name of the property to set if maxwait has

been exceeded.
No

Nested Elements

The available conditions that satisfy the <waitfor> task are the same as those
for the <condition> task. See here for the full list.

Examples

<waitfor maxwait="30" maxwaitunit="second">
<available file="errors.log"/>

</waitfor>

waits up to 30 seconds for a file called errors.log to appear.

<waitfor maxwait="3" maxwaitunit="minute" checkevery="500">
<http url="http://localhost/myapp/index.html"/>

</waitfor>

waits up to 3 minutes (and checks every 500 milliseconds) for a web server on
localhost to serve up the specified URL.

<waitfor maxwait="10" maxwait="second">
<and>

<socket server="dbserver" port="1521"/>
<http url="http://webserver/mypage.html"/>

</and>
</waitfor>

waits up to 10 seconds for a server on the dbserver machine to begin listening
on port 1521 and for the http://webserver/mypage.html web page to become
available.

5.2.72 War

Description

An extension of the Jar task with special treatment for files that should end
up in the WEB-INF/lib, WEB-INF/classes or WEB-INF directories of the Web
Application Archive.

(The War task is a shortcut for specifying the particular layout of a WAR file.
The same thing can be accomplished by using the prefix and fullpath attributes
of zipfilesets in a Zip or Jar task.)

The extended zipfileset element from the zip task (with attributes prefix,
fullpath, and src) is available in the War task.

Parameters

166 of 389

5.2 Core Tasks 167

Attribute Description Required
destfile the WAR file to create. Yes

warfile Deprecated name of the file to create -use dest-
file instead.

No

webxml The deployment descriptor to use (WEB-
INF/web.xml).

Yes, unless update
is set to true

basedir the directory from which to jar the files. No
compress Not only store data but also compress them,

defaults to true
No

encoding The character encoding to use for filenames
inside the archive. Defaults to UTF8. It is
not recommended to change this value as the
created archive will most likely be unreadable
for Java otherwise.

No

filesonly Store only file entries, defaults to false No
includes comma- or space-separated list of patterns of

files that must be included. All files are in-
cluded when omitted.

No

includesfile the name of a file. Each line of this file is taken
to be an include pattern

No

excludes comma- or space-separated list of patterns of
files that must be excluded. No files (except
default excludes) are excluded when omitted.

No

excludesfile the name of a file. Each line of this file is taken
to be an exclude pattern

No

defaultexcludes indicates whether default excludes should be
used or not (”yes”/”no”). Default excludes
are used when omitted.

No

manifest the manifest file to use. No
update indicates whether to update or overwrite the

destination file if it already exists. Default is
”false”.

No

duplicate behavior when a duplicate file is found. Valid
values are ”add”, ”preserve”, and ”fail”. The
default value is ”add”.

No

Nested elements

lib

The nested lib element specifies a FileSet. All files included in this fileset
will end up in the WEB-INF/lib directory of the war file.

classes

The nested classes element specifies a FileSet. All files included in this fileset

167 of 389

168 Ant Tasks

will end up in the WEB-INF/classes directory of the war file.
webinf

The nested webinf element specifies a FileSet. All files included in this fileset
will end up in the WEB-INF directory of the war file. If this fileset includes a
file named web.xml, the file is ignored and you will get a warning.

metainf

The nested metainf element specifies a FileSet. All files included in this
fileset will end up in the META-INF directory of the war file. If this fileset
includes a file named MANIFEST.MF, the file is ignored and you will get a
warning.

Examples

Assume the following structure in the project’s base directory:

thirdparty/libs/jdbc1.jar
thirdparty/libs/jdbc2.jar
build/main/com/myco/myapp/Servlet.class
src/metadata/myapp.xml
src/html/myapp/index.html
src/jsp/myapp/front.jsp
src/graphics/images/gifs/small/logo.gif
src/graphics/images/gifs/large/logo.gif

then the war file myapp.war created with

<war destfile="myapp.war" webxml="src/metadata/myapp.xml">
<fileset dir="src/html/myapp"/>
<fileset dir="src/jsp/myapp"/>
<lib dir="thirdparty/libs">

<exclude name="jdbc1.jar"/>
</lib>
<classes dir="build/main"/>
<zipfileset dir="src/graphics/images/gifs"

prefix="images"/>
</war>

will consist of

WEB-INF/web.xml
WEB-INF/lib/jdbc2.jar
WEB-INF/classes/com/myco/myapp/Servlet.class
META-INF/MANIFEST.MF
index.html
front.jsp
images/small/logo.gif
images/large/logo.gif

168 of 389

5.2 Core Tasks 169

using Ant’s default manifest file. The content of WEB-INF/web.xml is identical
to src/metadata/myapp.xml.

5.2.73 XmlProperty

Description

Loads property values from a valid xml file.

Parameters

Attribute Description Required
file The XML file to parse. Yes

prefix The prefix to prepend to each property No
keepRoot If false, it doesn’t include the xml root tag as

a first value in the property name.
No, default is true.

validate If true, it enables validation. No, default is false.
collapseAttributes If true, it treats attributes as nested elements. No, default is false.

Examples

<xmlproperty file="somefile.xml" />

Load contents of somefile.xml as Ant properties, generating the property names
from the file’s element and attribute names.

<root-tag myattr="true">
<inner-tag someattr="val">Text</inner-tag>
<a2><a3><a4>false</a4></a3></a2>

</root-tag>

This is an example xml file.

root-tag(myattr)=true
root-tag.inner-tag=Text
root-tag.inner-tag(someattr)=val
root-tag.a2.a3.a4=false

These are the properties loaded by this task from the previous example file.

<xmlproperty file="somefile.xml" collapseAttributes="true"/>

Load contents of somefile.xml as Ant properties collapsing attributes as nodes.

root-tag.myattr=true
root-tag.inner-tag=Text
root-tag.inner-tag.someatt=val
root-tag.a2.a3.a4=false

These are the properties loaded by this task from the previous example file,
with attribute collapsing true.

169 of 389

170 Ant Tasks

5.2.74 Xslt

Description

Process a set of documents via XSLT.
This is useful for building views of XML based documentation, or for gen-

erating code.
Note: This task depends on external libraries not included in the Ant dis-

tribution. See Library Dependencies for more information.
It is possible to refine the set of files that are being processed. This can be

done with the includes, includesfile, excludes, excludesfile and defaultexcludes
attributes. With the includes or includesfile attribute you specify the files you
want to have included by using patterns. The exclude or excludesfile attribute is
used to specify the files you want to have excluded. This is also done with pat-
terns. And finally with the defaultexcludes attribute, you can specify whether
you want to use default exclusions or not. See the section on directory based
tasks, on how the inclusion/exclusion of files works, and how to write patterns.

This task forms an implicit FileSet and supports all attributes of <fileset>
(dir becomes basedir) as well as the nested <include>, <exclude> and <patternset>
elements.

This task supports the use of a nested <param> element which is used to
pass values to an <xsl:param> declaration.

This task supports the use of a nested xmlcatalog element which is used to
perform Entity and URI resolution

<style> and <xslt> refer to the same Ant task and can be used interchange-
ably.

If you want to use Xalan-J 1 or XSL:P, you also need Ant’s optional.jar

Parameters

Attribute Description Required
basedir where to find the source XML file, default is

the project’s basedir.
No

destdir directory in which to store the results. Yes, unless in and
out have been spec-
ified.

extension desired file extension to be used for the tar-
gets. If not specified, the default is ”.html”.

No

style name of the stylesheet to use - given either rel-
ative to the project’s basedir or as an absolute
path DEPRECATED - can be specified as a
path relative to the basedir attribute of this
task as well.

Yes

170 of 389

5.2 Core Tasks 171

Attribute Description Required
classpath the classpath to use when looking up the

XSLT processor.
No

classpathref the classpath to use, given as reference to a
path defined elsewhere.

No

force Recreate target files, even if they are newer
than their corresponding source files or the
stylesheet.

No; default is false

processor name of the XSLT processor to use. Per-
missible values are ”trax” for a TraX compli-
ant processor (ie JAXP interface implemen-
tation such as Xalan 2 or Saxon), ”xslp” for
the XSL:P processor, ”xalan” for the Apache
XML Xalan (version 1) processor the name
of an arbitrary XSLTLiaison class. Defaults
to trax, followed by xalan and then xslp (in
that order). The first one found in your class
path is the one that is used. DEPRECATED -
XSL:P and xalan are deprecated and no more
supported..

No

includes comma- or space-separated list of patterns of
files that must be included. All files are in-
cluded when omitted.

No

includesfile the name of a file. Each line of this file is taken
to be an include pattern

No

excludes comma- or space-separated list of patterns of
files that must be excluded. No files (except
default excludes) are excluded when omitted.

No

excludesfile the name of a file. Each line of this file is taken
to be an exclude pattern

No

defaultexcludes indicates whether default excludes should be
used or not (”yes”/”no”). Default excludes
are used when omitted.

No

in specifies a single XML document to be styled.
Should be used with the out attribute.

No

out specifies the output name for the styled result
from the in attribute.

No

scanincludeddirectories If any directories are matched by the in-
cludes/excludes patterns, try to transform all
files in these directories. Default is true

No

171 of 389

172 Ant Tasks

Attribute Description Required
reloadstylesheet Control whether the stylesheet transformer is

created anew for every transform opertaion. If
you set this to true, performance may suffer,
but you may work around a bug in certain
Xalan-J versions. Default is false. Since Ant
1.5.2.

No

Parameters specified as nested elements

classpath

The classpath to load the processor from can be specified via a nested ¡class-
path¿, as well - that is, a path-like structure.

xmlcatalog

The xmlcatalog element is used to perform Entity and URI resolution.
param

Param is used to pass a parameter to the XSL stylesheet.

Parameters

Attribute Description Required
name Name of the XSL parameter Yes

expression XSL expression to be placed into the param.
To pass a text value into the style sheet it
needs to be escaped using single quotes.

Yes

outputproperty (’trax’ processors only)

Used to specify how you wish the result tree to be output as specified in the
XSLT specifications.

Parameters

Attribute Description Required
name Name of the property Yes

value value of the property. Yes

Examples

<style basedir="doc" destdir="build/doc"
extension=".html" style="style/apache.xsl"/>

Using an xmlcatalog

<xslt basedir="doc" destdir="build/doc"
extension=".html" style="style/apache.xsl">

172 of 389

5.2 Core Tasks 173

<xmlcatalog refid="mycatalog"/>
</xslt>

<xslt basedir="doc" destdir="build/doc"
extension=".html" style="style/apache.xsl">
<xmlcatalog>

<dtd
publicId="-//ArielPartners//DTD XML Article V1.0//EN"
location="com/arielpartners/knowledgebase/dtd/article.dtd"/>

</xmlcatalog>
</xslt>

Using XSL parameters

<xslt basedir="doc" destdir="build/doc"
extension=".html" style="style/apache.xsl">

<param name="date" expression="07-01-2000"/>
</xslt>

Then if you declare a global parameter ”date” with the top-level element ¡xsl:param
name=”date”/¿, the variable $date will subsequently have the value 07-01-2000.
Using output properties

<xslt in="doc.xml" out="build/doc/output.xml"
style="style/apache.xsl">

<outputproperty name="method" value="xml";/>
<outputproperty name="standalone" value="yes"/>
<outputproperty name="encoding" value="iso8859_1"/>
<outputproperty name="indent" value="yes"/>

</xslt>

5.2.75 Zip

Description

Creates a zipfile.
The basedir attribute is the reference directory from where to zip.
Note that file permissions will not be stored in the resulting zipfile.
It is possible to refine the set of files that are being zipped. This can be

done with the includes, includesfile, excludes, excludesfile and defaultexcludes
attributes. With the includes or includesfile attribute you specify the files you
want to have included by using patterns. The exclude or excludesfile attribute is
used to specify the files you want to have excluded. This is also done with pat-
terns. And finally with the defaultexcludes attribute, you can specify whether
you want to use default exclusions or not. See the section on directory based
tasks, on how the inclusion/exclusion of files works, and how to write patterns.

This task forms an implicit FileSet and supports all attributes of <fileset>
(dir becomes basedir) as well as the nested <include>, <exclude> and <patternset>
elements.

173 of 389

174 Ant Tasks

Or, you may place within it nested file sets, or references to file sets. In this
case basedir is optional; the implicit file set is only used if basedir is set. You
may use any mixture of the implicit file set (with basedir set, and optional at-
tributes like includes and optional subelements like <include>); explicit nested
<fileset> elements so long as at least one fileset total is specified. The ZIP
file will only reflect the relative paths of files within each fileset. The Zip task
and its derivatives know a special form of a fileset named zipfileset that has
additional attributes (described below).

The Zip task also supports the merging of multiple zip files into the zip file.
This is possible through either the src attribute of any nested filesets or by using
the special nested fileset zipgroupfileset.

The update parameter controls what happens if the ZIP file already exists.
When set to yes, the ZIP file is updated with the files specified. (New files are
added; old files are replaced with the new versions.) When set to no (the default)
the ZIP file is overwritten. Please note that ZIP files store file modification times
with a granularity of two seconds. If a file is less than two seconds newer than
the entry in the archive, Ant will not consider it newer.

The whenempty parameter controls what happens when no files match. If
skip (the default), the ZIP is not created and a warning is issued. If fail, the
ZIP is not created and the build is halted with an error. If create, an empty
ZIP file (explicitly zero entries) is created, which should be recognized as such
by compliant ZIP manipulation tools.

This task will now use the platform’s default character encoding for filenames
- this is consistent with the command line ZIP tools, but causes problems if you
try to open them from within Java and your filenames contain non US-ASCII
characters. Use the encoding attribute and set it to UTF8 to create zip files
that can safely be read by Java.

Starting with Ant 1.5.2, <zip> can store Unix permissions inside the archive
(see description of the filemode and dirmode attributes for <zipfileset>). Un-
fortunately there is no portable way to store these permissions. Ant uses the
algorithm used by Info-Zip’s implementation of the zip and unzip commands
- these are the default versions of zip and unzip for many Unix and Unix-like
systems.

174 of 389

5.2 Core Tasks 175

Parameters

Attribute Description Required
destfile the zip-file to create. Yes

zipfile the deprecated old name of destfile. Yes
basedir the directory from which to zip the files. No
compress Not only store data but also compress them, defaults to

true
No

encoding The character encoding to use for filenames inside
the zip file. For a list of possible values see
http://java.sun.com/products/jdk/1.2/docs/guide
/internat/encoding.doc.html. Defaults to the platform’s
default character encoding.

No

filesonly Store only file entries, defaults to false No
includes comma- or space-separated list of patterns of files that must

be included. All files are included when omitted.
No

includesfile the name of a file. Each line of this file is taken to be an
include pattern

No

excludes comma- or space-separated list of patterns of files that must
be excluded. No files (except default excludes) are excluded
when omitted.

No

excludesfile the name of a file. Each line of this file is taken to be an
exclude pattern

No

defaultexcludes indicates whether default excludes should be used or not
(”yes”/”no”). Default excludes are used when omitted.

No

update indicates whether to update or overwrite the destination
file if it already exists. Default is ”false”.

No

whenempty behavior when no files match. Valid values are ”fail”,
”skip”, and ”create”. Default is ”skip”.

No

duplicate behavior when a duplicate file is found. Valid values are
”add”, ”preserve”, and ”fail”. The default value is ”add”.

No

Parameters specified as nested elements

fileset
The zip task supports any number of nested <fileset> elements to specify

the files to be included in the archive.
zipfileset

A <zipfileset> is a special form of a <fileset> that adds some extra
functionality. It supports all attributes of <fileset> in addition to those listed
below.

Parameters

175 of 389

176 Ant Tasks

Attribute Description Required
prefix all files in the fileset are prefixed with that

path in the archive.
No

fullpath the file described by the fileset is placed at
that exact location in the archive.

No

src may be used in place of the dir attribute to
specify a zip file whose contents will be ex-
tracted and included in the archive.

No

filemode A 3 digit octal string, specify the user, group
and other modes in the standard Unix fash-
ion. Only applies to plain files. Default is
644. since Ant 1.5.2.

No

dirmode A 3 digit octal string, specify the user, group
and other modes in the standard Unix fashion.
Only applies to directories. Default is 755.
since Ant 1.5.2.

No

The fullpath attribute can only be set for filesets that represent a single file.
The prefix and fullpath attributes cannot both be set on the same fileset.

When using the src attribute, include and exclude patterns may be used
to specify a subset of the zip file for inclusion in the archive as with the dir
attribute.

zipgroupfileset

A <zipgroupfileset> allows for multiple zip files to be merged into the
archive. Each file found in this fileset is added to the archive the same way that
zipfileset src files are added.

Examples

<zip destfile="${dist}/manual.zip"
basedir="htdocs/manual"

/>

zips all files in the htdocs/manual directory into a file called manual.zip in the
${dist} directory.

<zip destfile="${dist}/manual.zip"
basedir="htdocs/manual"
update="true"

/>

zips all files in the htdocs/manual directory into a file called manual.zip in
the ${dist} directory. If manual.zip doesn’t exist, it is created; otherwise it is
updated with the new/changed files.

<zip destfile="${dist}/manual.zip"
basedir="htdocs/manual"

176 of 389

5.2 Core Tasks 177

excludes="mydocs/**, **/todo.html"
/>

zips all files in the htdocs/manual directory. Files in the directory mydocs, or
files with the name todo.html are excluded.

<zip destfile="${dist}/manual.zip"
basedir="htdocs/manual"
includes="api/**/*.html"
excludes="**/todo.html"

/>

zips all files in the htdocs/manual directory. Only html files under the directory
api are zipped, and files with the name todo.html are excluded.

<zip destfile="${dist}/manual.zip">
<fileset dir="htdocs/manual"/>
<fileset dir="." includes="ChangeLog.txt"/>

</zip>

zips all files in the htdocs/manual directory, and also adds the file ChangeLog.txt
in the current directory. ChangeLog.txt will be added to the top of the ZIP file,
just as if it had been located at htdocs/manual/ChangeLog.txt.

<zip destfile="${dist}/manual.zip">
<zipfileset dir="htdocs/manual" prefix="docs/user-guide"/>
<zipfileset dir="." includes="ChangeLog27.txt" fullpath="docs/ChangeLog.txt"/>
<zipfileset src="examples.zip" includes="**/*.html" prefix="docs/examples"/>

</zip>

zips all files in the htdocs/manual directory into the docs/user-guide di-
rectory in the archive, adds the file ChangeLog27.txt in the current directory
as docs/ChangeLog.txt, and includes all the html files in examples.zip under
docs/examples. The archive might end up containing the files:

docs/user-guide/html/index.html
docs/ChangeLog.txt
docs/examples/index.html

The code

<zip destfile="${dist}/manual.zip">
<zipfileset dir="htdocs/manual" prefix="docs/user-guide"/>
<zipgroupfileset dir="." includes="examples*.zip"/>

</zip>

zips all files in the htdocs/manual directory into the docs/user-guide directory
in the archive and includes all the files in any file that maches examples*.zip,
such as all files within examples1.zip or examples for brian.zip.

177 of 389

178 Ant Tasks

5.3 Optional Tasks

5.3.1 NET Tasks

<CSC>

This task compiles CSharp source into executables or modules. This task com-
piles CSharp source into executables or modules. The task will only work on
win2K/XP or other platforms with csc.exe or an equivalent. CSC must be on
the execute path.

All parameters are optional: <csc/> should suffice to produce a debug build
of all *.cs files. References to external files do require explicit enumeration, so
are one of the first attributes to consider adding.

The task is a directory based task, so attributes like includes=”**/*.cs” and
excludes=”broken.cs” can be used to control the files pulled in. By default, all
*.cs files from the project folder down are included in the command. When this
happens the destFile -if not specified- is taken as the first file in the list, which
may be somewhat hard to control. Specifying the output file with ’destfile’
seems prudent.

Also, dependency checking only works if destfile is set.
Attribute Description Required
Attribute Description Example Values
additionalModules Semicolon separated list of mod-

ules to refer to
defaultexcludes indicates whether default ex-

cludes should be used or not
”true”(default) or ”false”

definitions defined constants ”RELEASE;BETA1”
debug include debug information ”true”(default)
destFile name of exe/library to create ”example.exe”
docFile name of file for documentation ”doc.xml”
excludes comma- or space-separated list

of patterns of files that must
be excluded. No files (except
default excludes) are excluded
when omitted.

excludesfile the name of a file. Each line of
this file is taken to be an exclude
pattern

extraOptions Any extra options which aren’t
explicitly supported by the
CSharp task

”/warnaserror+ /basead-
dress:0x12840000”

failOnError Should a failed compile halt the
build?

”true”(default) or ”false”

178 of 389

5.3 Optional Tasks 179

Attribute Description Required
fileAlign set the file alignment. Valid val-

ues are 0,512, 1024, 2048, 4096,
8192, and 16384 0 means ’leave
to the compiler’

512

fullpaths print the full path of files on on
errors

includes comma- or space-separated list
of patterns of files that must be
included. All files are included
when omitted.

includeDefaultReferences Flag which when true automat-
ically includes the common as-
semblies in dotnet, and tells the
compiler to link in mscore.dll

”true”(default) or ”false”

includesfile the name of a file. Each line of
this file is taken to be an include
pattern

incremental Incremental build flag. Avoid till
it works

”true” or ”false”(default)

mainClass name of main class for executa-
bles

”com.example.project.entrypoint”

noConfig a flag which tells the compiler
not to read in the compiler set-
tings files ’csc.rsp’ in its bin di-
rectory and then the local direc-
tory

”true” or ”false”(default)

optimize optimisation flag ”true” or ”false”(default)
references Semicolon separated list of dlls to

refer to
”mylib.dll;nunit.dll”

referenceFiles Ant Path descriptioon of ref-
erences to include. Wildcards
should work.

srcDir source directory (default =
project directory)

”.”

targetType Type of target ”exe”, ”module”, ”winexe” or
”library”

unsafe enable the unsafe keyword ”true” or ”false”(default)
utf8output require all compiler output to be

in utf-8 format
”true” or ”false”(default)

warnLevel level of warning currently be-
tween 1 and 4 with 4 being the
strictest.

”1”-”4”

179 of 389

180 Ant Tasks

Attribute Description Required
win32Icon filename of icon to include ”res/myicon.ico”
win32res filename of a win32 resource

(.RES)file to include This is not a
.NET resource, but it what win-
dows is used to.

”res/myapp.res”

Example

<csc
optimize="true"
debug="false"
docFile="documentation.xml"
warnLevel="4"
unsafe="false"
targetType="exe"
incremental="false"
definitions="RELEASE"
excludes="src/unicode_class.cs"
mainClass = "MainApp"
destFile="NetApp.exe"
/>

<ilasm>

Task to assemble .net ’Intermediate Language’ files. The task will only work on
windows until other platforms support csc.exe or an equivalent. ilasm.exe must
be on the execute path too.

All parameters are optional: <il/> should suffice to produce a debug build
of all *.il files. The option set is roughly compatible with the CSharp class; even
though the command line options are only vaguely equivalent. [The low level
commands take things like /OUT=file, csc wants /out:file ... /verbose is used
some places; /quiet here in ildasm... etc.] It would be nice if someone made all
the command line tools consistent (and not as brittle as the java cmdline tools)

The task is a directory based task, so attributes like includes=”*.il” and
excludes=”broken.il” can be used to control the files pulled in. Each file is
built on its own, producing an appropriately named output file unless manually
specified with outfile
Attribute Description Required
Attribute Description Example
defaultexcludes indicates whether default ex-

cludes should be used or not
(”yes”/”no”). Default excludes
are used when omitted.

180 of 389

5.3 Optional Tasks 181

Attribute Description Required
debug include debug information true (default)
excludes comma separated list of patterns

of files that must be excluded.
No files (except default excludes)
are excluded when omitted.

excludesfile the name of a file. Each line of
this file is taken to be an exclude
pattern

extraOptions Any extra options which aren’t
explicitly supported by the ilasm
task, primarily because they ar-
ent really documented: use ilasm
/? to see them

failOnError Should a failed compile halt the
build?

”true”(default)

fullpaths Should error text provide the full
path to files

”true”(default)

includes comma separated list of patterns
of files that must be included.
All files are included when omit-
ted.

includesfile the name of a file. Each line of
this file is taken to be an include
pattern

keyfile the name of a file containing
a private key, with which the
assembly output is checksumed
and then MD5 signed to have a
strong name

listing Produce a listing (off by default).
Listings go to the current output
stream

”on”, ”off” (de-
fault)

outputFile filename of output ”example.exe”
resourceFile name of resource file to include ”resources.res”
srcDir source directory (default =

project directory)
targetType Type of target. library means

DLL is output.
”exe”(default), ”li-
brary”

verbose output progress messages ”on”, ”off” (de-
fault)

181 of 389

182 Ant Tasks

Attribute Description Required
Example

<ilasm
outputFile="app.exe"
verbose="on"
listing="on"
owner="secret"
/>

<WsdlToDotnet>

Why add a wrapper to the MS WSDL tool? So that you can verify that your
web services, be they written with Axis or anyone else’s SOAP toolkit, work
with .NET clients.

This task is dependency aware when using a file as a source and destination;
so if you <get> the file (with usetimestamp=”true”) then you only rebuild
stuff when the WSDL file is changed. Of course, if the server generates a
new timestamp every time you ask for the WSDL, this is not enough...use the
<filesmatch> <condition> to to byte for byte comparison against a cached
WSDL file then make the target conditional on that test failing.
Attribute Description Required
Attribute Description Example
destFile name of file to generate. Re-

quired
ApacheNet.cs

srcFile name of WSDL file to use. Re-
quired if url is not set

service.wsdl

url url to retrive WSDL from. re-
quired if srcFile is unset

http://localhost/service?wsdl

server generate server stubs, not client
proxy code. optional; default
false

”false”(default)

namespace namespace to place the source in.
optional; default ””

Apache.Net

language language; one of ”CS”, ”JS”, or
”VB” optional;

”CS” (default)

failOnError Should failure halt the build? ”true”(default)
extraOptions Any extra options which aren’t

explicitly supported by the task,
like all the proxy server config
stuff

182 of 389

5.3 Optional Tasks 183

Attribute Description Required

Change Log

Version 0.5
This revision goes along with NET 1.0 (SP1)

1. CSC: added filealign
2. CSC: added reference to office.dll
3. CSC: dependency checking! only if destFile is set!
4. WsdlToDotnet written

Version 0.4
This is the beta-2 revision of the tasks.

1. ILASM: pulled the owner attribute, added keyfile for giving
binaries a strong name (MD5 hash of the checksum)

2. CSC: added win32res , noConfig, utf8output, fullpaths
3. CSC:

Version 0.3

The changes here reflect Beta-1 of the dotnet SDK and experience of
use in more complex projects. This build does not work with the older
SDK, primarily because the automatic reference feature references
libraries only found in the new SDK version.

External changes

* Recursive inclusion of .cs and .il files
* Documentation enhanced, includes examples and details of all parameters
* The csc task automatically includes the common dotnet assemblies,
so there is no need to remember to refer to ’System.dll’,
’System.Web.Services’, etc. This feature can be disabled by
setting the ’includeDefaultReferences’ flag to false.

* References can also be referred to using the ReferenceFiles
parameter, which is an ant path specification. The old ’references’
string is still retained.

* An ’extraoptions’ attribute enables the build file to include any
CSC options which are not explicitly supported in the CSC task.

Internal changes

* Some minor refactoring (move common code a method)
* Application of Jedits JavaStyle task resulted in a major reshaping of the codebase and the insertion of a blank line every second line. Significant effort was required to revert some (but not all) changes.
* Removed throws clause from methods which can’t throw exceptions

183 of 389

184 Ant Tasks

The test harness has been expanded to include unicode source file (the
build works but the rest of the system has ’issues’ with high unicode
package and method names)

Version 0.2
First public edition, added to the ant cvs tree.
Tested on the PDC build of the dotnet SDK only, and still immature.
The command execution code was refactored out into a ’NetCommand’
class for re-use. The Ilasm task was added at this time.
Version 0.1
Initial proof of concept; very rudimentary support for CSC only.

5.3.2 ANTLR

Description

Invokes the ANTLR Translator generator on a grammar file.
To use the ANTLR task, set the target attribute to the name of the grammar

file to process. Optionally, you can also set the outputdirectory to write the
generated file to a specific directory. Otherwise ANTLR writes the generated
files to the directory containing the grammar file.

This task only invokes ANTLR if the grammar file is newer than the gener-
ated files.

Antlr 2.7.1 Note: To successfully run ANTLR, your best option is probably
to build the whole jar with the provided script mkalljar and drop the resulting
jar (about 300KB) into ${ant.home}/lib. Dropping the default jar (70KB) is
probably not enough for most needs and your only option will be to add ANTLR
home directory to your classpath as described in ANTLR install.html document.

Antlr 2.7.2 Note: Instead of the above, you will need antlrall.jar that can be
created by the antlr-all.jar target of the Makefile provided with the download.

Parameters

Attribute Description Required
target The grammar file to process. Yes

outputdirectory The directory to write the generated
files to. If not set, the files are written
to the directory containing the gram-
mar file.

No

glib An optional super grammar file that the
target grammar overrides. This feature
is only needed for advanced vocabular-
ies.

No

184 of 389

5.3 Optional Tasks 185

Attribute Description Required
debug When set to ”yes”, this flag adds code

to the generated parser that will launch
the ParseView debugger upon invoca-
tion. The default is ”

no”.

Note : ParseView is a separate component
that needs to be installed or your gram-
mar will have compilation errors.

No

html Emit an html version of the grammar
with hyperlinked actions.

No

diagnostic Generates a text file with debugging in-
fomation based on the target grammar.

No

trace Forces all rules to call traceIn/traceOut
if set to ”yes”. The default is ”no”.

No

traceParser Only forces parser rules to call tra-
ceIn/traceOut if set to ”yes”. The de-
fault is ”no”.

No

traceLexer Only forces lexer rules to call tra-
ceIn/traceOut if set to ”yes”. The de-
fault is ”no”.

No

traceTreeWalker Only forces tree walker rules to call tra-
ceIn/traceOut if set to ”yes”. The de-
fault is ”no”.

No

dir The directory to invoke the VM in. No

Nested Elements

ANTLR supports a nested <classpath> element, that represents a PATH like
structure. It is given as a convenience if you have to specify the original ANTLR
directory. In most cases, dropping the appropriate ANTLR jar in the normal
Ant lib repository will be enough.

jvmarg

Additional parameters may be passed to the new VM via nested <jvmarg>
attributes, for example:

<antlr target="...">
<jvmarg value="-Djava.compiler=NONE"/>
...

</antlr>

would run ANTLR in a VM without JIT.
<jvmarg> allows all attributes described in Command line arguments.

Example

<antlr

185 of 389

186 Ant Tasks

target="etc/java.g"
outputdirectory="build/src"

/>

This invokes ANTLR on grammar file etc/java.g, writing the generated files to
build/src.

5.3.3 Cab

Description

The cab task creates Microsoft cab archive files. It is invoked similar to the jar
or zip tasks. This task will work on Windows using the external cabarc tool
(provided by Microsoft) which must be located in your executable path.

To use this task on other platforms you need to download and compile lib-
cabinet from http://trill.cis.fordham.edu/ barbacha/cabinet library/.

See the section on directory based tasks, on how the inclusion/exclusion of
files works, and how to write patterns.

This task forms an implicit FileSet and supports all attributes of <fileset>
(dir becomes basedir) as well as the nested <include>, <exclude> and <patternset>
elements.

Parameters

Attribute Description Required
cabfile the name of the cab file to create. Yes

basedir the directory to start archiving files
from.

Yes

verbose set to ”yes” if you want to see the out-
put from the cabarc tool. defaults to
”no”.

No

compress set to ”no” to store files without com-
pressing. defaults to ”yes”.

No

options use to set additional command-line op-
tions for the cabarc tool. should not
normally be necessary.

No

includes comma- or space-separated list of pat-
terns of files that must be included. All
files are included when omitted.

No

includesfile the name of a file. Each line of this file
is taken to be an include pattern

No

excludes comma- or space-separated list of pat-
terns of files that must be excluded. No
files (except default excludes) are ex-
cluded when omitted.

No

186 of 389

5.3 Optional Tasks 187

Attribute Description Required
excludesfile the name of a file. Each line of this file

is taken to be an exclude pattern
No

defaultexcludes indicates whether default excludes
should be used or not (”yes”/”no”).
Default excludes are used when omit-
ted.

No

Parameters specified as nested elements

fileset

The cab task supports any number of nested <fileset> elements to specify
the files to be included in the archive.

Examples

<cab cabfile="${dist}/manual.cab"
basedir="htdocs/manual"

/>

cabs all files in the htdocs/manual directory into a file called manual.cab in the
${dist} directory.

<cab cabfile="${dist}/manual.cab"
basedir="htdocs/manual"
excludes="mydocs/**, **/todo.html"

/>

cabs all files in the htdocs/manual directory into a file called manual.cab in
the ${dist} directory. Files in the directory mydocs, or files with the name
todo.html are excluded.

<cab cabfile="${dist}/manual.cab"
basedir="htdocs/manual"
includes="api/**/*.html"
excludes="**/todo.html"
verbose="yes"

/>

Cab all files in the htdocs/manual directory into a file called manual.cab in the
${dist} directory. Only html files under the directory api are archived, and files
with the name todo.html are excluded. Output from the cabarc tool is displayed
in the build output.

187 of 389

188 Ant Tasks

5.3.4 Clearcase Tasks

CCCheckin

Description

Task to perform a Checkin command to ClearCase.
Parameters

Attribute Description Required
viewpath Path to the ClearCase view file or di-

rectory that the command will operate
on

No

comment Specify a comment. Only one of com-
ment or commentfile may be used.

No

commentfile Specify a file containing a comment.
Only one of comment or commentfile
may be used.

No

nowarn Suppress warning messages No
preservetime Preserve the modification time No
keepcopy Keeps a copy of the file with a .keep

extension
No

identical Allows the file to be checked in even if
it is identical to the original

No

Examples

<cccheckin viewpath="c:/views/viewdir/afile"
commentfile="acomment.txt"
nowarn="true"
identical="true"/>

Does a ClearCase checkin on the file c:/views/viewdir/afile. Comment text
from the file acomment.txt is added to ClearCase as a comment. All warning
messages are suppressed. The file is checked in even if it is identical to the
original.

CCCheckout

Description

Task to perform a Checkout command to ClearCase.
Parameters

Attribute Values Required
viewpath Path to the ClearCase view file or di-

rectory that the command will operate
on

No

188 of 389

5.3 Optional Tasks 189

Attribute Values Required
reserved Specifies whether to check out the file

as reserved or not
Yes

out Creates a writable file under a different
filename

No

nodata Checks out the file but does not create
an editable file containing its data

No

branch Specify a branch to check out the file to No
version Allows checkout of a version other than

main latest
No

nowarn Suppress warning messages No
comment Specify a comment. Only one of com-

ment or commentfile may be used.
No

commentfile Specify a file containing a comment.
Only one of comment or commentfile
may be used.

No

Examples

<cccheckout viewpath="c:/views/viewdir/afile"
reserved="true"
branch="abranch"
nowarn="true"
comment="Some comment text"/>

Does a ClearCase checkout on the file c:/views/viewdir/afile. It is checked out
as reserved on branch called abranch. All warning messages are suppressed. A
Some comment text is added to ClearCase as a comment.

CCUnCheckout

Description

Task to perform a UnCheckout command to ClearCase.
Parameters

Attribute Values Required
viewpath Path to the ClearCase view file or di-

rectory that the command will operate
on

No

keepcopy Specifies whether to keep a copy of the
file with a .keep extension or not

No

Examples

<ccuncheckout viewpath="c:/views/viewdir/afile"
keepcopy="true"/>

189 of 389

190 Ant Tasks

Does a ClearCase uncheckout on the file c:/views/viewdir/afile. A copy of the
file called c:/views/viewdir/afile.keep is kept.

CCUpdate

Description

Task to perform an Update command to ClearCase.
Parameters

Attribute Values Required
viewpath Path to the ClearCase view file or di-

rectory that the command will operate
on

No

graphical Displays a graphical dialog during the
update

No

log Specifies a log file for ClearCase to write
to

No

overwrite Specifies whether to overwrite hijacked
files or not

No

rename Specifies that hijacked files should be
renamed with a .keep extension

No

currenttime Specifies that modification time should
be written as the current time. Ei-
ther currenttime or preservetime can be
specified.

No

preservetime Specifies that modification time should
preserved from the VOB time. Ei-
ther currenttime or preservetime can be
specified.

No

Examples

<ccupdate viewpath="c:/views/viewdir"
graphical="false"
log="log.log"
overwrite="true"
currenttime="true"
rename="false"/>

Does a ClearCase update on the directory c:/views/viewdir. A graphical dialog
will be displayed. The output will be logged to log.log and it will overwrite any
hijacked files. The modified time will be set to the current time.

190 of 389

5.3 Optional Tasks 191

5.3.5 Continuus/Synergy Tasks

These ant tasks are wrappers around Continuus Source Manager. They have
been tested with version 5.1 on Windows 2000, but should work on other plat-
forms with ccm installed.

CCMCheckin

Description

Task to checkin a file
Parameters

Attribute Values Required
file Path to the file that the command will

operate on
Yes

comment Specify a comment. Default is
”Checkin” plus the date

No

task Specify the task number used to check
in the file (may use ’default’)

No

ccmdir path to the ccm executable file, re-
quired if it is not on the PATH

No

Examples

<ccmcheckin file="c:/wa/com/foo/MyFile.java"
comment="mycomment"/>

Checks in the file c:/wa/com/foo/MyFile.java. Comment attribute mycomment
is added as a task comment. The task used is the one set as the default.

CCMCheckout

Description

Task to perform a Checkout command to Continuus
Parameters

Attribute Values Required
file Path to the file that the command will

operate on
Yes

comment Specify a comment. No
task Specify the task number used to checkin

the file (may use ’default’)
No

ccmdir path to the ccm executable file, re-
quired if it is not on the PATH

No

191 of 389

192 Ant Tasks

Attribute Values Required
Examples

<ccmcheckout file="c:/wa/com/foo/MyFile.java"
comment="mycomment"/>

Check out the file c:/wa/com/foo/MyFile.java. Comment attribute mycomment
is added as a task comment The used task is the one set as the default.

CCMCheckinTask

Description

Task to perform a check in default task command to Continuus
Parameters

Attribute Values Required
comment Specify a comment. No

task Specify the task number used to check
in the file (may use ’default’)

No

ccmdir path to the ccm executable file, re-
quired if it is not on the PATH

No

Examples

<ccmcheckintask comment="blahblah/>

Does a Checkin default task on all the checked out files in the current task.

CCMReconfigure

Description

Task to perform an reconfigure command to Continuus.
Parameters

Attribute Values Required
recurse recurse on subproject (default false) No

verbose do a verbose reconfigure operation (de-
fault false)

No

ccmproject Specifies the ccm project on which the
operation is applied.

Yes

ccmdir path to the ccm executable file, re-
quired if it is not on the PATH

No

Examples

192 of 389

5.3 Optional Tasks 193

<ccmreconfigure ccmproject="ANTCCM_TEST#BMO_1"
verbose="true" />

Does a Continuus reconfigure on the project ANTCCM TEST#BMO 1.

CCMCreateTask

Description

Create a Continuus task.
Parameters

Attribute Values Required
comment Specify a comment. No

platform Specify the target platform No
ccmdir path to the ccm executable file, re-

quired if it is not on the PATH
No

resolver Specify the resolver No
release Specify the CCM release No
subsystem Specify the subsystem No
task Specify the task number used to checkin

the file (may use ’default’)
No

Examples

<ccmcreatetask resolver="${user.name}"
release="ANTCCM_TEST" comment="blahblah" />

Creates a task for the release ANTCCM TEST with the current user as the
resolver for this task.

5.3.6 Depend

A task to manage Java class file dependencies.

Description

The depend task works by determining which classes are out of date with respect
to their source and then removing the class files of any other classes which
depend on the out-of-date classes.

To determine the class dependencies, the depend task analyses the class files
of all class files passed to it. Depend does not parse your source code in any way
but relies upon the class references encoded into the class files by the compiler.
This is generally faster than parsing the Java source.

To learn more about how this information is obtained from the class files,
please refer to the Java Virtual Machine Specification

Since a class’ dependencies only change when the class itself changes, the
depend task is able to cache dependency information. Only those class files

193 of 389

194 Ant Tasks

which have changed will have their dependency information re-analysed. Note
that if you change a class’ dependencies by changing the source, it will be re-
compiled anyway. You can examine the dependency files created to understand
the dependencies of your classes. Please do not rely, however, on the format of
the information, as it may change in a later release.

Once depend discovers all of the class dependencies, it ”inverts” this relation
to determine, for each class, which other classes are dependent upon it. This
”affects” list is used to discover which classes are invalidated by the out of
date class. The class files of the invalidated classes are removed, triggering the
compilation of the affected classes.

The depend task supports an attribute, ”closure” which controls whether
depend will only consider direct class-class relationships or whether it will also
consider transitive, indirect relationships. For example, say there are three
classes, A, which depends on B, which in-turn depend on C. Now say that class
C is out of date. Without closure, only class B would be removed by depend.
With closure set, class A would also be removed. Normally direct relationships
are sufficient - it is unusual for a class to depend on another without having
a direct relationship. With closure set, you will notice that depend typically
removes far more class files.

The classpath attribute for <depend> is optional. If it is present, depend
will check class dependencies against classes and jars on this classpath. Any
classes which depend on an element from this classpath and which are older
than that element will be deleted. A typical example where you would use this
facility would be where you are building a utility jar and want to make sure
classes which are out of date with respect to this jar are rebuilt. You should
not include jars in this classpath which you do not expect to change, such as
the JDK runtime jar or third party jars, since doing so will just slow down the
dependency check. This means that if you do use a classpath for the depend
task it may be different from the classpath necessary to actually compile your
code.

Performance

The performance of the depend task is dependent on a number of factors such
as class relationship complexity and how many class files are out of date. The
decision about whether it is cheaper to just recompile all classes or to use the
depend task will depend on the size of your project and how interrelated your
classes are.

Limitations

There are some source dependencies which depend will not detect.

• If the Java compiler optimizes away a class relationship, there can be a
source dependency without a class dependency.

194 of 389

5.3 Optional Tasks 195

• Non public classes cause two problems. Firstly depend cannot relate the
class file to a source file. In the future this may be addressed using the
source file attribute in the classfile. Secondly, neither depend nor the
compiler tasks can detect when a non public class is missing. Inner classes
are handled by the depend task.

The most obvious example of these limitations is that the task can’t tell which
classes to recompile when a constant primitive data type exported by other
classes is changed. For example, a change in the definition of something like

public final class Constants {
public final static boolean DEBUG=false;

}

will not be picked up by other classes.
Parameters

Attribute Values Required
srcDir This is the directory where the source

exists. depend will examine this to de-
termine which classes are out of date. If
you use multiple source directories you
can pass this attribute a path of source
directories.

Yes

destDir This is the root directory of the class
files which will be analysed. If this is
not present, the srcdir is used.

No

cache This is a directory in which depend can
store and retrieve dependency informa-
tion. If this is not present, depend will
not use a cache

No

closure This attribute controls whether depend
only removes classes which directly de-
pend on out of date classes. If this is set
to true, depend will traverse the class
dependency graph deleting all affected
classes. Defaults to false

No

dump If true the dependency information will
be written to the debug level log

No

classpath The classpath containg jars and classes
for which <depend> should also check
dependencies

No

195 of 389

196 Ant Tasks

Attribute Values Required
Parameters specified as nested elements

The depend task’s classpath attribute is a PATH-like structure and can also
be set via a nested <classpath> element.

Additionally, this task forms an implicit FileSet and supports all attributes
of <fileset> (dir becomes srcdir), as well as the nested <include>, <exclude>,
and <patternset> elements.

Examples

<depend srcdir="${java.dir}"
destdir="${build.classes}"
cache="depcache"
closure="yes"/>

removes any classes in the ${build.classes} directory that depend on out-of-date
classes. Classes are considered out-of-date with respect to the source in the
${java.dir} directory, using the same mechanism as the <javac> task. In this
example, the <depend> task caches its dependency information in the depcache
directory.

<depend srcdir="${java.dir}" destdir="${build.classes}"
cache="depcache" closure="yes">

<include name="**/*.java"/>
<excludesfile name="${java.dir}/build_excludes"/>

</depend>

does the same as the previous example, but explicitly includes all .java files,
except those that match the list given in ${java.dir}/build excludes.

5.3.7 EJB Tasks

by

* Paul Austin (p_d_austin@yahoo.com)
* Holger Engels (hengels@innovidata.com)
* Tim Fennell (tfenne@rcn.com)
* Martin Gee (martin.gee@icsynergy.com)
* Conor MacNeill
* Cyrille Morvan (cmorvan@ingenosya.com)
* Greg Nelson (gn@sun.com)

Version @VERSION@
$Id: ejb.html,v 1.23.2.17 2003/03/19 13:43:32 conor Exp $

Ant provides a number of optional tasks for developing Enterprise Java Beans
(EJBs). In general these tasks are specific to the particular vendor’s EJB Server.

At present the tasks support:

196 of 389

5.3 Optional Tasks 197

• Borland Application Server 4.5

• iPlanet Application Server 6.0

• JBoss 2.1 and above EJB servers

• Weblogic 4.5.1 through to 7.0 EJB servers

• JOnAS 2.4.x and 2.5 Open Source EJB server

• IBM WebSphere 4.0

Over time we expect further optional tasks to support additional EJB Servers.

EJB Tasks

Task Application Servers
blgenclient Borland Application Server 4.5
ddcreator Weblogic 4.5.1
ejbc Weblogic 4.5.1
iplanet-ejbc iPlanet Application Server 6.0

ejbjar

Nested Elements
borland Borland Application Server 4.5
iPlanet iPlanet Application Server 6.0
jboss JBoss
jonas JOnAS 2.4.x and 2.5
weblogic Weblogic 5.1 to 7.0
websphere IBM WebSphere 4.0

wlrun Weblogic 4.5.1 to 7.0
wlstop Weblogic 4.5.1 to 7.0

ddcreator

Description:
ddcreator will compile a set of Weblogic text-based deployment descriptors

into a serialized EJB deployment descriptor. The selection of which of the text-
based descriptors are to be compiled is based on the standard Ant include and
exclude selection mechanisms.

Parameters

Attribute Values Required
descriptors This is the base directory from which

descriptors are selected.
Yes

dest The directory where the serialized de-
ployment descriptors will be written

Yes

classpath This is the classpath to use to
run the underlying weblogic ddcre-
ator tool. This must include the we-
blogic.ejb.utils.DDCreator class

No

197 of 389

198 Ant Tasks

Attribute Description Required
Examples

<ddcreator descriptors="${dd.dir}"
dest="${gen.classes}"
classpath="${descriptorbuild.classpath}">

<include name="*.txt"/>
</ddcreator>

ejbc

Description:

The ejbc task will run Weblogic’s ejbc tool. This tool will take a serialized
deployment descriptor, examine the various EJB interfaces and bean classes
and then generate the required support classes necessary to deploy the bean in
a Weblogic EJB container. This will include the RMI stubs and skeletons as
well as the classes which implement the bean’s home and remote interfaces.

The ant task which runs this tool is able to compile several beans in a single
operation. The beans to be compiled are selected by including their serialized
deployment descriptors. The standard ant include and exclude constructs can
be used to select the deployment descriptors to be included.

Each descriptor is examined to determine whether the generated classes
are out of date and need to be regenerated. The deployment descriptor is
de-serialized to discover the home, remote and implementation classes. The
corresponding source files are determined and checked to see their modification
times. These times and the modification time of the serialized descriptor itself
are compared with the modification time of the generated classes. If the gener-
ated classes are not present or are out of date, the ejbc tool is run to generate
new versions.

Parameters

Attribute Description Required
descriptors This is the base directory from which

the serialized deployment descriptors
are selected.

Yes

dest The base directory where the generated
classes, RIM stubs and RMI skeletons
are written

Yes

manifest The name of a manifest file to be writ-
ten. This manifest will contain an entry
for each EJB processed

Yes

198 of 389

5.3 Optional Tasks 199

Attribute Description Required
src The base directory of the source tree

containing the source files of the home
interface, remote interface and bean im-
plementation classes.

Yes

classpath This classpath must include both the
weblogic.ejbc class and the class files of
the bean, home interface, remote inter-
face, etc of the bean being processed.

No

keepgenerated Controls whether ejbc will keep the in-
termediate Java files used to build the
class files. This can be useful when de-
bugging.

No, defaults
to false.

Examples

<ejbc descriptors="${gen.classes}"
src="${src.dir}"
dest="${gen.classes}"
manifest="${build.manifest}"
classpath="${descriptorbuild.classpath}">

<include name="*.ser"/>
</ejbc>

iplanet-ejbc

Description:

Task to compile EJB stubs and skeletons for the iPlanet Application Server
6.0. Given a standard EJB 1.1 XML descriptor as well as an iAS-specific EJB
descriptor, this task will generate the stubs and skeletons required to deploy
the EJB to iAS. Since the XML descriptors can include multiple EJBs, this is
a convenient way of specifying many EJBs in a single Ant task.

For each EJB specified, the task will locate the three classes that comprise
the EJB in the destination directory. If these class files cannot be located in
the destination directory, the task will fail. The task will also attempt to locate
the EJB stubs and skeletons in this directory. If found, the timestamps on the
stubs and skeletons will be checked to ensure they are up to date. Only if these
files cannot be found or if they are out of date will the iAS ejbc utility be called
to generate new stubs and skeletons.

Parameters

Attribute Description Required
ejbdescriptor Standard EJB 1.1 XML descriptor

(typically titled ”ejb-jar.xml”).
Yes

199 of 389

200 Ant Tasks

Attribute Description Required
iasdescriptor iAS-specific EJB XML descriptor (typ-

ically titled ”ias-ejb-jar.xml”).
Yes

dest The is the base directory where the
RMI stubs and skeletons are written.
In addition, the class files for each bean
(home interface, remote interface, and
EJB implementation) must be found in
this directory.

Yes

classpath The classpath used when generating
EJB stubs and skeletons. If omitted,
the classpath specified when Ant was
started will be used. Nested ”class-
path” elements may also be used.

No

keepgenerated Indicates whether or not the Java
source files which are generated by ejbc
will be saved or automatically deleted.
If ”yes”, the source files will be re-
tained. If omitted, it defaults to ”no”.

No

debug Indicates whether or not the ejbc utility
should log additional debugging state-
ments to the standard output. If ”yes”,
the additional debugging statements
will be generated. If omitted, it defaults
to ”no”.

No

iashome May be used to specify the ”home” di-
rectory for this iAS installation. This
is used to find the ejbc utility if it isn’t
included in the user’s system path. If
specified, it should refer to the ”[install-
location]/iplanet/ias6/ias” directory. If
omitted, the ejbc utility must be on the
user’s system path.

No

Examples

<iplanet-ejbc ejbdescriptor="ejb-jar.xml"
iasdescriptor="ias-ejb-jar.xml"
dest="${build.classesdir}"
classpath="${ias.ejbc.cpath}"/>

<iplanet-ejbc ejbdescriptor="ejb-jar.xml"
iasdescriptor="ias-ejb-jar.xml"
dest="${build.classesdir}"
keepgenerated="yes"
debug="yes"

200 of 389

5.3 Optional Tasks 201

iashome="${ias.home}">
<classpath>

<pathelement path="."/>
<pathelement path="${build.classpath}"/>

</classpath>
</iplanet-ejbc>

wlrun

Description:

The wlrun task is used to start a weblogic server. The task runs a weblogic
instance in a separate Java Virtual Machine. A number of parameters are used
to control the operation of the weblogic instance. Note that the task, and hence
ant, will not complete until the weblogic instance is stopped.

Parameters

Attribute Description Required
BEA Home The location of the BEA Home where

the server’s config is defined. If this at-
tribute is present, wlrun assumes that
the server will be running under We-
blogic 6.0

N/A Yes

home The location of the weblogic home that
is to be used. This is the location where
weblogic is installed.

Yes Yes. Note this is
the absolute lo-
cation, not rel-
ative to BEA
home.

Domain The domain to which the server be-
longs.

N/A Yes

classpath The classpath to be used with the Java
Virtual Machine that runs the Weblogic
Server. Prior to Weblogic 6.0, this is
typically set to the Weblogic boot class-
path. Under Weblogic 6.0 this should
include all the weblogic jars

Yes Yes

wlclasspath The weblogic classpath used by the We-
blogic Server.

No N/A

properties The name of the server’s properties
file within the weblogic home directory
used to control the weblogic instance.

Yes N/A

name The name of the weblogic server within
the weblogic home which is to be run.
This defaults to ”myserver”

No No

201 of 389

202 Ant Tasks

Attribute Description Required for
4.5.1 and 5.1

Required for 6.0

policy The name of the security policy file
within the weblogic home directory that
is to be used. If not specified, the de-
fault policy file weblogic.policy is used.

No No

username The management username used to
manage the server

N/A No

password The server’s management password N/A Yes
pkPassword The private key password so the server

can decrypt the SSL private key file
N/A No

jvmargs Additional argument string passed to
the Java Virtual Machine used to run
the Weblogic instance.

No No

weblogicMainClass name of the main class for weblogic No No
Nested Elements

The wlrun task supports nested <classpath> and <wlclasspath> elements
to set the respective classpaths.

Examples

This example shows the use of wlrun to run a server under Weblogic 5.1

<wlrun taskname="myserver"
classpath="${weblogic.boot.classpath}"
wlclasspath="${weblogic.classes}:${code.jars}"
name="myserver"
home="${weblogic.home}"
properties="myserver/myserver.properties"/>

This example shows wlrun being used to run the petstore server under Weblogic
6.0

<wlrun taskname="petstore"
classpath="${weblogic.classes}"
name="petstoreServer"
domain="petstore"
home="${weblogic.home}"
password="petstorePassword"
beahome="${bea.home}"/>

wlstop

Description:

The wlstop task is used to stop a weblogic instance which is currently run-
ning. To shut down an instance you must supply both a username and a pass-
word. These will be stored in the clear in the build script used to stop the

202 of 389

5.3 Optional Tasks 203

instance. For security reasons, this task is therefore only appropriate in a de-
velopment environment.

This task works for most version of Weblogic, including 6.0. You need to
specify the BEA Home to have this task work correctly under 6.0

Parameters

Attribute Description Required
BEAHome This attribute selects Weblogic 6.0 shutdown. No
classpath The classpath to be used with the Java Vir-

tual Machine that runs the Weblogic Shut-
down command.

Yes

user The username of the account which will be
used to shutdown the server

Yes

password The password for the account specified in the
user parameter.

Yes

url The URL which describes the port to which
the server is listening for T3 connections. For
example, t3://localhost:7001

Yes

delay The delay in seconds after which the server
will stop. This defaults to an immediate shut-
down.

No

Nested Element

The classpath of the wlstop task can be set by a <classpath> nested element.
Examples

This example show the shutdown for a Weblogic 6.0 server

<wlstop classpath="${weblogic.classes}"
user="system"
url="t3://localhost:7001"
password="foobar"
beahome="${bea.home}"/>

ejbjar

Description:

This task is designed to support building of EJB jar files (EJB 1.1 & 2.0).
Support is currently provided for ’vanilla’ EJB jar files - i.e. those contain-
ing only the user generated class files and the standard deployment descriptor.
Nested elements provide support for vendor specific deployment tools. These
currently include:

• Borland Application Server 4.5

• iPlanet Application Server 6.0

203 of 389

204 Ant Tasks

• JBoss 2.1 and above

• Weblogic 5.1/6.0 session/entity beans using the weblogic.ejbc tool

• IBM WebSphere 4.0

• TOPLink for WebLogic 2.5.1-enabled entity beans

• JOnAS 2.4.x and 2.5 Open Source EJB server

The task works as a directory scanning task, and performs an action for each
deployment descriptor found. As such the includes and excludes should be
set to ensure that all desired EJB descriptors are found, but no application
server descriptors are found. For each descriptor found, ejbjar will parse the
deployment descriptor to determine the necessary class files which implement
the bean. These files are assembled along with the deployment descriptors into
a well formed EJB jar file. Any support files which need to be included in the
generated jar can be added with the <support> nested element. For each class
included in the jar, ejbjar will scan for any super classes or super interfaces.
These will be added to the generated jar.

If no nested vendor-specific deployment elements are present, the task will
simply generate a generic EJB jar. Such jars are typically used as the input to
vendor-specific deployment tools. For each nested deployment element, a vendor
specific deployment tool is run to generate a jar file ready for deployment in that
vendor’s EJB container.

The jar files are only built if they are out of date. Each deployment tool
element will examine its target jar file and determine if it is out of date with
respect to the class files and deployment descriptors that make up the bean. If
any of these files are newer than the jar file the jar will be rebuilt otherwise a
message is logged that the jar file is up to date.

The task uses the jakarta-BCEL framework to extract all dependent classes.
This means that, in addition to the classes that are mentioned in the deployment
descriptor, any classes that these depend on are also automatically included in
the jar file.

Naming Convention

Ejbjar handles the processing of multiple beans, and it uses a set of naming
conventions to determine the name of the generated EJB jars. The naming
convention that is used is controlled by the ”naming” attribute. It supports the
following values

• descriptor

This is the default naming scheme. The name of the generated bean is
derived from the name of the deployment descriptor. For an Account
bean, for example, the deployment descriptor would be named Account-
ejb-jar.xml. Vendor specific descriptors are located using the same naming

204 of 389

5.3 Optional Tasks 205

convention. The weblogic bean, for example, would be named Account-
weblogic-ejb-jar.xml. Under this arrangement, the deployment descriptors
can be separated from the code implementing the beans, which can be
useful when the same bean code is deployed in separate beans.

This scheme is useful when you are using one bean per EJB jar and where
you may be deploying the same bean classes in different beans, with dif-
ferent deployment characteristics.

• ejb-name

This naming scheme uses the <ejb-name> element from the deployment
descriptor to determine the bean name. In this situation, the descriptors
normally use the generic descriptor names, such as ejb-jar.xml along with
any associated vendor specific descriptor names. For example, If the value
of the <ejb-name> were to be given in the deployment descriptor as follows:

<ejb-jar>
<enterprise-beans>

<entity>
<ejb-name>Sample</ejb-name>
<home>org.apache.ant.ejbsample.SampleHome</home>

then the name of the generated bean would be Sample.jar

This scheme is useful where you want to use the standard deployment
descriptor names, which may be more compatible with other EJB tools.
This scheme must have one bean per jar.

• directory

In this mode, the name of the generated bean jar is derived from the
directory containing the deployment descriptors. Again the deployment
descriptors typically use the standard filenames. For example, if the path
to the deployment descriptor is /home/user/dev/appserver/dd/sample,
then the generated bean will be named sample.jar

This scheme is also useful when you want to use standard style descriptor
names. It is often most useful when the descriptors are located in the
same directory as the bean source code, although that is not mandatory.
This scheme can handle multiple beans per jar.

• basejarname

The final scheme supported by the <ejbjar> task is used when you want
to specify the generated bean jar name directly. In this case the name of
the generated jar is specified by the ”basejarname” attribute. Since all

205 of 389

206 Ant Tasks

generated beans will have the same name, this task should be only used
when each descriptor is in its own directory.

This scheme is most appropriate when you are using multiple beans per
jar and only process a single deployment descriptor. You typically want
to specify the name of the jar and not derive it from the beans in the jar.

Dependencies

In addition to the bean classes, ejbjar is able to ad additional classes to the
generated ejbjar. These classes are typically the support classes which are used
by the bean’s classes or as parameters to the bean’s methods.

In versions of Ant prior to 1.5, ejbjar used reflection and attempted to add
the super classes and super interfaces of the bean classes. For this technique to
work the bean classes had to be loaded into Ant’s JVM. This was not always
possible due to class dependencies.

The ejbjar task in Ant releases 1.5 and later uses the jakarta-BCEL library
to analyze the bean’s class files directly, rather than loading them into the JVM.
This also allows ejbjar to add all of the required support classes for a bean and
not just super classes.

In Ant 1.5, a new attribute, dependency has been introduced to allow the
buildfile to control what additional classes are added to the generated jar. It
takes three possible values

• none - only the bean classes and interfaces described in the bean’s descrip-
tor are added to the jar.

• super - this is the default value and replicates the original ejbjar behaviour
where super classes and super interfaces are added to the jar

• full - In this mode all classes used by the bean’s classes and interfaces are
added to the jar

The super and full values require the jakarta-BCEL library to be available. If it
is not, ejbjar will drop back to the behaviour corresponding to the value none.

Parameters

206 of 389

5.3 Optional Tasks 207

Attribute Description Required
descriptordir The base directory under which to scan

for EJB deployment descriptors. If this
attribute is not specified, then the de-
ployment descriptors must be located
in the directory specified by the ’srcdir’
attribute.

No

srcdir The base directory containing the .class
files that make up the bean. In-
cluded are the home- remote- pk- and
implementation- classes and all classes,
that these depend on. Note that this
can be the same as the descriptordir if
all files are in the same directory tree.

Yes

destdir The base directory into which gener-
ated jar files are deposited. Jar files
are deposited in directories correspond-
ing to their location within the descrip-
tordir namespace. Note that this at-
tribute is only used if the task is gen-
erating generic jars (i.e. no vendor-
specific deployment elements have been
specified).

Yes

naming Controls the naming convention used to
name generated EJB jars. Please refer
to the description above.

No

basejarname The base name that is used for the gen-
erated jar files. If this attribute is spec-
ified, the generic jar file name will use
this value as the prefix (followed by the
value specified in the ’genericjarsuffix’
attribute) and the resultant ejb jar file
(followed by any suffix specified in the
nested element).

No

basenameterminator String value used to substring out
a string from the name of each de-
ployment descriptor found, which is
then used to locate related deploy-
ment descriptors (e.g. the We-
bLogic descriptors). For example,
a basename of ’.’ and a deploy-
ment descriptor called ’FooBean.ejb-
jar.xml’ would result in a basename
of ’FooBean’ which would then be
used to find FooBean.weblogic-ejb-
jar.xml and FooBean.weblogic-cmp-
rdbms-jar.xml, as well as to create the
filenames of the jar files as FooBean-
generic.jar and FooBean-wl.jar. This
attribute is not used if the ’basejar-
name’ attribute is specified. No, de-
faults to ’-

’.

genericjarsuffix String value appended to the basename
of the deployment descriptor to create
the filename of the generic EJB jar file.
No, defaults to ’-generic.

jar’.

classpath This classpath is used when resolving
classes which are to be added to the
jar. Typically nested deployment tool
elements will also support a classpath
which will be combined with this class-
path when resolving classes

No.

flatdestdir Set this attribute to true if you want all
generated jars to be placed in the root
of the destdir, rather than according to
the location of the deployment descrip-
tor within the descriptor dir hierarchy.

No.

dependency This attribute controls which addi-
tional classes and interfaces are added
to the jar. Please refer to the descrip-
tion above

No.

207 of 389

208 Ant Tasks

Nested Elements

In addition to the vendor specific nested elements, the ejbjar task provides
three nested elements.

Classpath

The <classpath> nested element allows the classpath to be set. It is useful
when setting the classpath from a reference path. In all other respects the
behaviour is the same as the classpath attribute.

dtd

The <dtd> element is used to specify the local location of DTDs to be used
when parsing the EJB deployment descriptor. Using a local DTD is much
faster than loading the DTD across the net. If you are running ejbjar behind
a firewall you may not even be able to access the remote DTD. The supported
vendor-specific nested elements know the location of the required DTDs within
the vendor class hierarchy and, in general, this means <dtd> elements are not
required. It does mean, however, that the vendor’s class hierarchy must be
available in the classpath when Ant is started. If your want to run Ant without
requiring the vendor classes in the classpath, you would need to use a <dtd>
element.

Attribute Description Required
publicId The public Id of the DTD for which the

location is being provided
Yes

location The location of the local copy of the
DTD. This can either be a file or a re-
source loadable from the classpath.

Yes

support

The <support> nested element is used to supply additional classes (files)
to be included in the generated jars. The <support> element is a FileSet, so
it can either reference a fileset declared elsewhere or it can be defined in-place
with the appropriate <include> and <exclude> nested elements. The files in
the support fileset are added into the generated EJB jar in the same relative
location as their location within the support fileset. Note that when ejbjar
generates more than one jar file, the support files are added to each one.

Vendor-specific deployment elements

Each vendor-specific nested element controls the generation of a deployable
jar specific to that vendor’s EJB container. The parameters for each supported
deployment element are detailed here.

Jboss element

The jboss element searches for the JBoss specific deployment descriptors
and adds them to the final ejb jar file. JBoss has two deployment descriptors
jboss.xml and jaws.xml (for container manager persistence only). The JBoss

208 of 389

5.3 Optional Tasks 209

server uses hot deployment and does not require compilation of additional stubs
and skeletons.

Attribute Description Required
destdir The base directory into which the gen-

erated weblogic ready jar files are de-
posited. Jar files are deposited in direc-
tories corresponding to their location
within the descriptordir namespace.

Yes

genericjarsuffix A generic jar is generated as an interme-
diate step in build the weblogic deploy-
ment jar. The suffix used to generate
the generic jar file is not particularly
important unless it is desired to keep
the generic jar file. It should not, how-
ever, be the same as the suffix setting.

No, de-
faults to ’-
generic.jar’.

suffix String value appended to the basename
of the deployment descriptor to create
the filename of the JBoss EJB jar file.

No, defaults
to ’.jar’.

keepgeneric This controls whether the generic file
used as input to ejbc is retained.

No, defaults
to false

Weblogic element

The weblogic element is used to control the weblogic.ejbc compiler for gen-
erating weblogic EJB jars. Prior to Ant 1.3, the method of locating CMP
descriptors was to use the ejbjar naming convention. So if your ejb-jar was
called, Customer-ejb-jar.xml, your weblogic descriptor was called Customer-
weblogic-ejb-jar.xml and your CMP descriptor had to be Customer-weblogic-
cmp- rdbms-jar.xml. In addition, the <type-storage> element in the weblogic
descriptor had to be set to the standard name META-INF/weblogic-cmp-rdbms-
jar.xml, as that is where the CMP descriptor was mapped to in the generated
jar.

There are a few problems with this scheme. It does not allow for more than
one CMP descriptor to be defined in a jar and it is not compatible with the
deployment descriptors generated by some tools.

In Ant 1.3, ejbjar parses the weblogic deployment descriptor to discover
the CMP descriptors, which are then included automatically. This behaviour
is controlled by the newCMP attribute. Note that if you move to the new
method of determining CMP descriptors, you will need to update your weblogic
deployment descriptor’s <type-storage> element. In the above example, you
would define this as META-INF/Customer-weblogic-cmp-rdbms-jar.xml.

209 of 389

210 Ant Tasks

Attribute Description Required
destdir The base directory into which the generated weblogic ready

jar files are deposited. Jar files are deposited in directo-
ries corresponding to their location within the descriptordir
namespace.

Yes

genericjarsuffix A generic jar is generated as an intermediate step in build
the weblogic deployment jar. The suffix used to generate
the generic jar file is not particularly important unless it is
desired to keep the generic jar file. It should not, however,
be the same as the suffix setting.

No, de-
faults
to ’-
generic.jar’.

suffix String value appended to the basename of the deployment
descriptor to create the filename of the WebLogic EJB jar
file.

No, de-
faults to
’.jar’.

classpath The classpath to be used when running the weblogic ejbc
tool. Note that this tool typically requires the classes that
make up the bean to be available on the classpath. Cur-
rently, however, this will cause the ejbc tool to be run in a
separate VM

No

wlclasspath Weblogic 6.0 will give a warning if the home and remote in-
terfaces of a bean are on the system classpath used to run
weblogic.ejbc. In that case, the standard weblogic classes
should be set with this attribute (or equivalent nested ele-
ment) and the home and remote interfaces located with the
standard classpath attribute

No

keepgeneric This controls whether the generic file used as input to ejbc
is retained.

No, de-
faults to
false

compiler This allows for the selection of a different compiler to be
used for the compilation of the generated Java files. This
could be set, for example, to Jikes to compile with the Jikes
compiler. If this is not set and the build.compiler property
is set to jikes, the Jikes compiler will be used. If this is not
desired, the value ”default” may be given to use the default
compiler

No

rebuild This flag controls whether weblogic.ejbc is always invoked
to build the jar file. In certain circumstances, such as when
only a bean class has been changed, the jar can be generated
by merely replacing the changed classes and not rerunning
ejbc. Setting this to false will reduce the time to run ejbjar.

No, de-
faults to
true.

keepgenerated Controls whether weblogic will keep the generated Java files
used to build the class files added to the jar. This can be
useful when debugging

No, de-
faults to
false.

args Any additional arguments to be passed to the weblogic.ejbc
tool.

No.

weblogicdtd Deprecated. Defines the location of the ejb-jar DTD in the
weblogic class hierarchy. This should not be necessary if
you have weblogic in your classpath. If you do not, you
should use a nested <dtd> element, described above. If
you do choose to use an attribute, you should use a nested
<dtd> element.

No.

wldtd Deprecated. Defines the location of the weblogic-ejb-jar
DTD which covers the Weblogic specific deployment de-
scriptors. This should not be necessary if you have weblogic
in your classpath. If you do not, you should use a nested
<dtd> element, described above.

No.

210 of 389

5.3 Optional Tasks 211

Attribute Description Required
ejbdtd Deprecated. Defines the location of the ejb-jar DTD in the

weblogic class hierarchy. This should not be necessary if
you have weblogic in your classpath. If you do not, you
should use a nested <dtd> element, described above.

No.

newCMP If this is set to true, the new method for locating CMP
descriptors will be used.

No. De-
faults to
false

oldCMP Deprecated This is an antonym for newCMP which should
be used instead.

No.

noEJBC If this attribute is set to true, Weblogic’s ejbc will not be
run on the EJB jar. Use this if you prefer to run ejbc at
deployment time.

No.

ejbcclass Specifies the classname of the ejbc compiler. Normally ejb-
jar determines the appropriate class based on the DTD
used for the EJB. The EJB 2.0 compiler featured in we-
blogic 6 has, however, been deprecated in version 7. When
using with version 7 this attribute should be set to ”we-
blogic.ejbc” to avoid the deprecation warning.

No.

jvmargs Any additional arguments to be passed to the Virtual Ma-
chine running weblogic.ejbc tool. For example to set the
memory size, this could be jvmargs=”-Xmx128m”

No.

jvmdebuglevel Sets the weblogic.StdoutSeverityLevel to use when running
the Virtual Machine that executes ejbc. Set to 16 to avoid
the warnings about EJB Home and Remotes being in the
classpath

No.

outputdir If set ejbc will be given this directory as the output desti-
nation rather than a jar file. This allows for the generation
of ”exploded” jars.

No.

The weblogic nested element supports three nested elements. The first two,
<classpath> and <wlclasspath>, are used to set the respective classpaths.
These nested elements are useful when setting up class paths using reference
Ids. The last, <sysproperty>, allows Java system properties to be set during
the compiler run. This turns out to be necessary for supporting CMP EJB
compilation in all environments.

TOPLink for Weblogic element

Deprecated

The toplink element is no longer required. Toplink beans can now be built
with the standard weblogic element, as long as the newCMP attribute is set to
”true”

The TopLink element is used to handle beans which use Toplink for the CMP
operations. It is derived from the standard weblogic element so it supports the
same set of attributes plus these additional attributes

211 of 389

212 Ant Tasks

Attribute Description Required
toplinkdescriptor This specifies the name of the TOPLink deployment de-

scriptor file contained in the ’descriptordir’ directory.
Yes

toplinkdtd This specifies the location of the TOPLink DTD file. This
can be a file path or a file URL. This attribute is not re-
quired, but using a local DTD is recommended.

No, de-
faults to
dtd file at
www.objectpeople.com.

Examples

This example shows ejbjar being used to generate deployment jars using
a Weblogic EJB container. This example requires the naming standard to be
used for the deployment descriptors. Using this format will create a ejb jar file
for each variation of ’*-ejb-jar.xml’ that is found in the deployment descriptor
directory.

<ejbjar srcdir="${build.classes}"
descriptordir="${descriptor.dir}">

<weblogic destdir="${deploymentjars.dir}"
classpath="${descriptorbuild.classpath}"/>

<include name="**/*-ejb-jar.xml"/>
<exclude name="**/*weblogic*.xml"/>

</ejbjar>

If weblogic is not in the Ant classpath, the following example shows how to
specify the location of the weblogic DTDs. This example also show the use of a
nested classpath element.

<ejbjar descriptordir="${src.dir}" srcdir="${build.classes}">
<weblogic destdir="${deployment.webshop.dir}"

keepgeneric="true"
args="-g -keepgenerated ${ejbc.compiler}"
suffix=".jar"
oldCMP="false">

<classpath>
<pathelement path="${descriptorbuild.classpath}"/>

</classpath>
</weblogic>
<include name="**/*-ejb-jar.xml"/>
<exclude name="**/*-weblogic-ejb-jar.xml"/>
<dtd
publicId="-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN"
location="${weblogic.home}/classes/weblogic/ejb/deployment/xml/ejb-jar.dtd"/>
<dtd
publicId="-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB//EN"
location="${weblogic.home}/classes/weblogic/ejb/deployment/xml/weblogic-ejb-jar.dtd"/>

</ejbjar>

212 of 389

5.3 Optional Tasks 213

This example shows ejbjar being used to generate a single deployment jar us-
ing a Weblogic EJB container. This example does not require the deployment
descriptors to use the naming standard. This will create only one ejb jar file -
’TheEJBJar.jar’.

<ejbjar srcdir="${build.classes}"
descriptordir="${descriptor.dir}"
basejarname="TheEJBJar">

<weblogic destdir="${deploymentjars.dir}"
classpath="${descriptorbuild.classpath}"/>

<include name="**/ejb-jar.xml"/>
<exclude name="**/weblogic*.xml"/>

</ejbjar>

This example shows ejbjar being used to generate deployment jars for a TOPLink-
enabled entity bean using a Weblogic EJB container. This example does not
require the deployment descriptors to use the naming standard. This will create
only one TOPLink-enabled ejb jar file – ’Address.jar’.

<ejbjar srcdir="${build.dir}"
destdir="${solant.ejb.dir}"
descriptordir="${descriptor.dir}"
basejarname="Address">
<weblogictoplink destdir="${solant.ejb.dir}"

classpath="${java.class.path}"
keepgeneric="false"
toplinkdescriptor="Address.xml"
toplinkdtd="file:///dtdfiles/toplink-cmp_2_5_1.dtd"
suffix=".jar"/>

<include name="**/ejb-jar.xml"/>
<exclude name="**/weblogic-ejb-jar.xml"/>

</ejbjar>

This final example shows how you would set-up ejbjar under Weblogic 6.0. It
also shows the use of the <support> element to add support files

<ejbjar descriptordir="${dd.dir}" srcdir="${build.classes.server}">
<include name="**/*-ejb-jar.xml"/>
<exclude name="**/*-weblogic-ejb-jar.xml"/>
<support dir="${build.classes.server}">

<include name="**/*.class"/>
</support>
<weblogic destdir="${deployment.dir}"

keepgeneric="true"
suffix=".jar"
rebuild="false">

<classpath>
<pathelement path="${build.classes.server}"/>

213 of 389

214 Ant Tasks

</classpath>
<wlclasspath>

<pathelement path="${weblogic.classes}"/>
</wlclasspath>

</weblogic>
</ejbjar>

WebSphere element

The websphere element searches for the websphere specific deployment de-
scriptors and adds them to the final ejb jar file. Websphere has two specific
descriptors for session beans:

1. ibm-ejb-jar-bnd.xmi

2. ibm-ejb-jar-ext.xmi

and another two for container managed entity beans:

1. Map.mapxmi

2. Schema.dbxmi

In terms of WebSphere, the generation of container code and stubs is called
deployment. This step can be performed by the websphere element as part of
the jar generation process. If the switch ejbdeploy is on, the ejbdeploy tool from
the websphere toolset is called for every ejb-jar. Unfortunately, this step only
works, if you use the ibm jdk. Otherwise, the rmic (called by ejbdeploy) throws
a ClassFormatError. Be sure to switch ejbdeploy off, if run ant with sun jdk.

For the websphere element to work, you have to provide a complete class-
path, that contains all classes, that are required to reflect the bean classes. For
ejbdeploy to work, you must also provide the classpath of the ejbdeploy tool
and set the websphere.home property (look at the examples below).

214 of 389

5.3 Optional Tasks 215

Attribute Description Required
destdir The base directory into which the generated

weblogic ready jar files are deposited. Jar files
are deposited in directories corresponding to
their location within the descriptordir names-
pace.

Yes

ejbdeploy Decides wether ejbdeploy is called. When you
set this to true, be sure, to run ant with the
ibm jdk.

No, defaults to true

suffix String value appended to the basename of the
deployment descriptor to create the filename
of the WebLogic EJB jar file.

No, defaults to
’.jar’.

keepgeneric This controls whether the generic file used as
input to ejbdeploy is retained.

No, defaults to false

rebuild This controls whether ejbdeploy is called al-
though no changes have occurred.

No, defaults to false

tempdir A directory, where ejbdeploy will write tem-
porary files

No, defaults to
’ ejbdeploy temp’.

dbName
dbSchema These options are passed to ejbdeploy. No

dbVendor This option is passed to ejbdeploy. Valid op-
tions are for example:

• SQL92

• SQL99

• DB2UDBWIN V71

• DB2UDBOS390 V6

• DB2UDBAS400 V4R5

• ORACLE V8

• INFORMIX V92

• SYBASE V1192

• MYSQL V323

• MSSQLSERVER V7

This is also used to determine
the name of the Map.mapxmi and
Schema.dbxmi files, for example Account-
DB2UDBWIN V71-Map.mapxmi and
Account-DB2UDBWIN V71-Schema.dbxmi.

No

215 of 389

216 Ant Tasks

Attribute Description Required
codegen
quiet
novalidate
noinform
trace
use35MappingRules

These options are all passed to ejbdeploy. All
options except ’quiet’ default to false.

No

rmicOptions This option is passed to ejbdeploy and will be
passed on to rmic.

No

This example shows ejbjar being used to generate deployment jars for all
deployment descriptors in the descriptor dir:

<property name="websphere.home" value="${was4.home}"/>
<ejbjar srcdir="${build.class}" descriptordir="etc/ejb">
<include name="*-ejb-jar.xml"/>
<websphere dbvendor="DB2UDBOS390_V6"

ejbdeploy="true"
oldCMP="false"
tempdir="/tmp"
destdir="${dist.server}">

<wasclasspath>
<pathelement

location="${was4.home}/deploytool/itp/plugins/org.eclipse.core.boot/boot.jar"/>
<pathelement

location="${was4.home}/deploytool/itp/plugins/com.ibm.etools.ejbdeploy/runtime/batch.jar"/>
<pathelement location="${was4.home}/lib/xerces.jar"/>
<pathelement location="${was4.home}/lib/ivjejb35.jar"/>
<pathelement location="${was4.home}/lib/j2ee.jar"/>
<pathelement location="${was4.home}/lib/vaprt.jar"/>

</wasclasspath>
<classpath>
<path refid="build.classpath"/>

</classpath>
</websphere>
<dtd
publicId="-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN"
location="${lib}/dtd/ejb-jar_1_1.dtd"/>

</ejbjar>

iPlanet Application Server (iAS) element

The <iplanet> nested element is used to build iAS-specific stubs and skele-
tons and construct a JAR file which may be deployed to the iPlanet Application
Server 6.0. The build process will always determine if the EJB stubs/skeletons
and the EJB-JAR file are up to date, and it will do the minimum amount of
work required.

216 of 389

5.3 Optional Tasks 217

Like the WebLogic element, a naming convention for the EJB descriptors
is most commonly used to specify the name for the completed JAR file. For
example, if the EJB descriptor ejb/Account-ejb-jar.xml is found in the descrip-
tor directory, the iplanet element will search for an iAS-specific EJB descriptor
file named ejb/Account-ias-ejb-jar.xml (if it isn’t found, the task will fail) and
a JAR file named ejb/Account.jar will be written in the destination directory.
Note that when the EJB descriptors are added to the JAR file, they are auto-
matically renamed META-INF/ejb-jar.xml and META-INF/ias-ejb-jar.xml.

Of course, this naming behaviour can be modified by specifying attributes in
the ejbjar task (for example, basejarname, basenameterminator, and flatdestdir)
as well as the iplanet element (for example, suffix). Refer to the appropriate
documentation for more details.

Parameters:

destdir The base directory into which the gener-
ated JAR files will be written. Each JAR
file is written in directories which correspond
to their location within the ”descriptordir”
namespace.

Yes

classpath The classpath used when generating EJB
stubs and skeletons. If omitted, the classpath
specified in the ”ejbjar” parent task will be
used. If specified, the classpath elements will
be prepended to the classpath specified in the
parent ”ejbjar” task. Note that nested ”class-
path” elements may also be used.

No

keepgenerated Indicates whether or not the Java source files
which are generated by ejbc will be saved or
automatically deleted. If ”yes”, the source
files will be retained. If omitted, it defaults
to ”no”.

No

debug Indicates whether or not the ejbc utility
should log additional debugging statements to
the standard output. If ”yes”, the additional
debugging statements will be generated. If
omitted, it defaults to ”no”.

No

iashome May be used to specify the ”home” directory
for this iAS installation. This is used to find
the ejbc utility if it isn’t included in the user’s
system path. If specified, it should refer to the
[install-location]/iplanet/ias6/ias directory. If
omitted, the ejbc utility must be on the user’s
system path.

No

suffix String value appended to the JAR filename
when creating each JAR. If omitted, it de-
faults to ”.jar”.

No

217 of 389

218 Ant Tasks

As noted above, the iplanet element supports additional <classpath> nested
elements.

Examples

This example demonstrates the typical use of the <iplanet> nested element.
It will name each EJB-JAR using the ”basename” prepended to each standard
EJB descriptor. For example, if the descriptor named ”Account-ejb-jar.xml” is
processed, the EJB-JAR will be named ”Account.jar”

<ejbjar srcdir="${build.classesdir}"
descriptordir="${src}">

<iplanet destdir="${assemble.ejbjar}"
classpath="${ias.ejbc.cpath}"/>

<include name="**/*-ejb-jar.xml"/>
<exclude name="**/*ias-*.xml"/>

</ejbjar>

This example demonstrates the use of a nested classpath element as well as
some of the other optional attributes.

<ejbjar srcdir="${build.classesdir}"
descriptordir="${src}">

<iplanet destdir="${assemble.ejbjar}"
iashome="${ias.home}"
debug="yes"
keepgenerated="yes">
<classpath>

<pathelement path="."/>
<pathelement path="${build.classpath}"/>

</classpath>
</iplanet>
<include name="**/*-ejb-jar.xml"/>
<exclude name="**/*ias-*.xml"/>

</ejbjar>

This example demonstrates the use of basejarname attribute. In this case, the
completed EJB-JAR will be named ”HelloWorld.jar” If multiple EJB descriptors
might be found, care must be taken to ensure that the completed JAR files don’t
overwrite each other.

<ejbjar srcdir="${build.classesdir}"
descriptordir="${src}"
basejarname="HelloWorld">

<iplanet destdir="${assemble.ejbjar}"
classpath="${ias.ejbc.cpath}"/>

218 of 389

5.3 Optional Tasks 219

<include name="**/*-ejb-jar.xml"/>
<exclude name="**/*ias-*.xml"/>

</ejbjar>

This example demonstrates the use of the dtd nested element. If the local copies
of the DTDs are included in the classpath, they will be automatically referenced
without the nested elements. In iAS 6.0 SP2, these local DTDs are found in the
[iAS-install-directory]/APPS directory. In iAS 6.0 SP3, these local DTDs are
found in the [iAS-install-directory]/dtd directory.

<ejbjar srcdir="${build.classesdir}"
descriptordir="${src}">
<iplanet destdir="${assemble.ejbjar}">

classpath="${ias.ejbc.cpath}"/>
<include name="**/*-ejb-jar.xml"/>
<exclude name="**/*ias-*.xml"/>

<dtd publicId="-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN"
location="${ias.home}/APPS/ejb-jar_1_1.dtd"/>

<dtd publicId="-//Sun Microsystems, Inc.//DTD iAS Enterprise JavaBeans 1.0//EN"
location="${ias.home}/APPS/IASEjb_jar_1_0.dtd"/>

</ejbjar>

JOnAS (Java Open Application Server) element

The <jonas> nested element is used to build JOnAS-specific stubs and skele-
tons thanks to the GenIC specific tool, and construct a JAR file which may be
deployed to the JOnAS Application Server. The build process will always de-
termine if the EJB stubs/skeletons and the EJB-JAR file are up to date, and it
will do the minimum amount of work required.

Like the WebLogic element, a naming convention for the EJB descriptors is
most commonly used to specify the name for the completed JAR file. For ex-
ample, if the EJB descriptor ejb/Account-ejb-jar.xml is found in the descriptor
directory, the <jonas> element will search for a JOnAS-specific EJB descriptor
file named ejb/Account-jonas-ejb-jar.xml and a JAR file named ejb/Account.jar
will be written in the destination directory. But the <jonas> element can also
use the JOnAS naming convention. With the same example as below, the EJB
descriptor can also be named ejb/Account.xml (no base name terminator here)
in the descriptor directory. Then the <jonas> element will search for a JOnAS-
specific EJB descriptor file called ejb/jonas-Account.xml. This convention do
not follow strictly the ejb-jar naming convention recommendation but is sup-
ported for backward compatibility with previous version of JOnAS.

Note that when the EJB descriptors are added to the JAR file, they are auto-
matically renamed META-INF/ejb-jar.xml and META-INF/jonas-ejb-jar.xml.

Of course, this naming behavior can be modified by specifying attributes in
the ejbjar task (for example, basejarname, basenameterminator, and flatdestdir)

219 of 389

220 Ant Tasks

as well as the iplanet element (for example, suffix). Refer to the appropriate
documentation for more details.

Parameters:

Attribute Description Required
destdir The base directory into which the gener-

ated JAR files will be written. Each JAR
file is written in directories which correspond
to their location within the ”descriptordir”
namespace.

Yes

jonasroot The root directory for JOnAS. Yes
classpath The classpath used when generating EJB

stubs and skeletons. If omitted, the class-
path specified in the ”ejbjar” parent task will
be used. If specified, the classpath elements
will be prepended to the classpath specified
in the parent ”ejbjar” task (see also the ORB
attribute documentation below). Note that
nested ”classpath” elements may also be used.

No

keepgenerated true if the intermediate Java source files gen-
erated by GenIC must be deleted or not. If
omitted, it defaults to false.

No

nocompil true if the generated source files must not be
compiled via the java and rmi compilers. If
omitted, it defaults to false.

No

novalidation true if the XML deployment descriptors must
be parsed without validation. If omitted, it
defaults to false.

No

javac Java compiler to use. If omitted, it defaults to
the value of build.compiler property.

No

220 of 389

5.3 Optional Tasks 221

Attribute Description Required
javacopts Options to pass to the java compiler. No
rmicopts Options to pass to the rmi compiler. No
secpropag true if the RMI Skel. and Stub. must be mod-

ified to implement the implicit propagation of
the security context (the transactional context
is always provided). If omitted, it defaults to
false.

No

verbose Indicates whether or not to use -verbose
switch. If omitted, it defaults to false.

No

additionalargs Add additional args to GenIC. No
keepgeneric true if the generic JAR file used as input to

GenIC must be retained. If omitted, it de-
faults to false.

No

suffix String value appended to the JAR filename
when creating each JAR. If omitted, it de-
faults to ”.jar”.

No

orb Choose your ORB : RMI, JEREMIE, DAVID.
If omitted, it defaults to the one present
in classpath. If specified, the corresponding
JOnAS JAR is automatically added to the
classpath.

No

nogenic If this attribute is set to true, JOnAS’s GenIC
will not be run on the EJB JAR. Use this if
you prefer to run GenIC at deployment time.
If omitted, it defaults to false.

No

As noted above, the jonas element supports additional <classpath> nested
elements.

Examples

This example shows ejbjar being used to generate deployment jars using a
JOnAS EJB container. This example requires the naming standard to be used
for the deployment descriptors. Using this format will create a EJB JAR file for
each variation of ’*-jar.xml’ that is found in the deployment descriptor directory.

<ejbjar srcdir="${build.classes}"
descriptordir="${descriptor.dir}">

<jonas destdir="${deploymentjars.dir}"
jonasroot="${jonas.root}"
orb="RMI"/>

<include name="**/*.xml"/>
<exclude name="**/jonas-*.xml"/>
<support dir="${build.classes}">

<include name="**/*.class"/>
</support>

</ejbjar>

221 of 389

222 Ant Tasks

This example shows ejbjar being used to generate a single deployment jar using a
JOnAS EJB container. This example does require the deployment descriptors to
use the naming standard. This will create only one ejb jar file - ’TheEJBJar.jar’.

<ejbjar srcdir="${build.classes}"
descriptordir="${descriptor.dir}"
basejarname="TheEJBJar">

<jonas destdir="${deploymentjars.dir}"
jonasroot="${jonas.root}"
suffix=".jar"
classpath="${descriptorbuild.classpath}"/>

<include name="**/ejb-jar.xml"/>
<exclude name="**/jonas-ejb-jar.xml"/>

</ejbjar>

5.3.8 Echoproperties

Description

Displays all the current properties in the project. The output can be sent to a
file if desired. You can also specify a subset of properties to save by naming a
prefix: only properties starting with this prefix will be saved. This task can be
used as a somewhat contrived means of returning data from an <ant> invocation,
but is really for debugging build files.

Parameters

Attribute Description Required
destfile If specified, the value indicates the name of

the file to send the output of the statement
to. The generated output file is compatible for
loading by any Java application as a property
file. If not specified, then the output will go
to the Ant log.

No

prefix a prefix which is used to filter the properties
only those properties starting with this prefix
will be echoed.

No

failonerror By default, the ”failonerror” attribute is en-
abled. If an error occurs while writing the
properties to a file, and this attribute is en-
abled, then a BuildException will be thrown,
causing the build to fail. If disabled, then IO
errors will be reported as a log statement, and
the build will continue without failure from
this task.

No

222 of 389

5.3 Optional Tasks 223

Examples

<echoproperties/>

Report the current properties to the log.

<echoproperties destfile="my.properties"/>

Report the current properties to the file ”my.properties”, and will fail the build
if the file could not be created or written to.

<echoproperties destfile="my.properties" failonerror="false" />

Report the current properties to the file ”my.properties”, and will log a message
if the file could not be created or written to, but will still allow the build to
continue.

<echoproperties prefix="java."/>

List all properties beginning with ”java.”

5.3.9 FTP

Description

The ftp task implements a basic FTP client that can send, receive, list, delete
files, and create directories. See below for descriptions and examples of how to
perform each task.

Note: This task depends on external libraries not included in the Ant dis-
tribution. See Library Dependencies for more information.

The ftp task makes no attempt to determine what file system syntax is
required by the remote server, and defaults to Unix standards. remotedir must
be specified in the exact syntax required by the ftp server. If the usual Unix
conventions are not supported by the server, separator can be used to set the
file separator that should be used instead.

See the section on directory based tasks, on how the inclusion/exclusion of
files works, and how to write patterns.

This task does not currently use the proxy information set by the <setproxy>
task, and cannot go through a firewall via socks.

Warning: for the get and delete actions to work properly with a Windows
2000 ftp server, it needs to be configured to generate Unix style listings, and
not the default MS-DOS listing. Or someone needs to write the code to parse
MS-DOS listings -any takers?

223 of 389

224 Ant Tasks

Parameters

Attribute Description Required
server the address of the remote ftp server. Yes
port the port number of the remote ftp server. De-

faults to port 21.
No

userid the login id to use on the ftp server. Yes
password the login password to use on the ftp server. Yes
remotedir the directory to which to upload files on the

ftp server.
No

action the ftp action to perform, defaulting to
”send”. Currently supports ”put”, ”get”,
”del”, ”list”, ”chmod” and ”mkdir”.

No

binary selects binary-mode (”yes”) or text-mode
(”no”) transfers. Defaults to ”yes”

No

passive selects passive-mode (”yes”) transfers. De-
faults to ”no”

No

verbose displays information on each file transferred if
set to ”yes”. Defaults to ”no”.

No

depends transfers only new or changed files if set to
”yes”. Defaults to ”no”.

No

newer a synonym for depends. No
separator sets the file separator used on the ftp server.

Defaults to ”/”.
No

umask sets the default file permissions for new files,
unix only.

No

chmod sets or changes file permissions for new or ex-
isting files, unix only. If used with a put ac-
tion, chmod will be issued for each file.

No

listing the file to write results of the ”list” action.
Required for the ”list” action, ignored other-
wise.

No

ignoreNoncriticalErrors flag which permits the task to ignore some
non-fatal error codes sent by some servers dur-
ing directory creation: wu-ftp in particular.
Default: false

No

skipFailedTransfers flag which enables unsuccessful file put, delete
and get operations to be skipped with a warn-
ing and the remainder of the files still trans-
ferred. Default: false

No

Sending Files

The easiest way to describe how to send files is with a couple of examples:

<ftp server="ftp.apache.org"

224 of 389

5.3 Optional Tasks 225

userid="anonymous"
password="me@myorg.com">

<fileset dir="htdocs/manual"/>
</ftp>

Logs in to ftp.apache.org as anonymous and uploads all files in the htdocs/manual
directory to the default directory for that user.

<ftp server="ftp.apache.org"
remotedir="incoming"
userid="anonymous"
password="me@myorg.com"
depends="yes"

>
<fileset dir="htdocs/manual"/>

</ftp>

Logs in to ftp.apache.org as anonymous and uploads all new or changed files in
the htdocs/manual directory to the incoming directory relative to the default
directory for anonymous.

<ftp server="ftp.apache.org"
port="2121"
remotedir="/pub/incoming"
userid="coder"
password="java1"
depends="yes"
binary="no"

>
<fileset dir="htdocs/manual">
<include name="**/*.html"/>

</fileset>
</ftp>

Logs in to ftp.apache.org at port 2121 as coder with password java1 and up-
loads all new or changed HTML files in the htdocs/manual directory to the
/pub/incoming directory. The files are transferred in text mode. Passive mode
has been switched on to send files from behind a firewall.

<ftp server="ftp.nt.org"
remotedir="c:\uploads"
userid="coder"
password="java1"
separator="\"
verbose="yes"

>
<fileset dir="htdocs/manual">

225 of 389

226 Ant Tasks

<include name="**/*.html"/>
</fileset>

</ftp>

Logs in to the Windows-based ftp.nt.org as coder with password java1 and
uploads all HTML files in the htdocs/manual directory to the c:
uploads directory. Progress messages are displayed as each file is uploaded.

Getting Files
Getting files from an FTP server works pretty much the same way as sending

them does. The only difference is that the nested filesets use the remotedir
attribute as the base directory for the files on the FTP server, and the dir
attribute as the local directory to put the files into. The file structure from the
FTP site is preserved on the local machine.

<ftp action="get"
server="ftp.apache.org"
userid="anonymous"
password="me@myorg.com">

<fileset dir="htdocs/manual">
<include name="**/*.html"/>

</fileset>
</ftp>

Logs in to ftp.apache.org as anonymous and recursively downloads all .html
files from default directory for that user into the htdocs/manual directory on
the local machine.

. Deleting Files
As you’ve probably guessed by now, you use nested fileset elements to select

the files to delete from the remote FTP server. Again, the filesets are relative
to the remote directory, not a local directory. In fact, the dir attribute of the
fileset is ignored completely.

<ftp action="del"
server="ftp.apache.org"
userid="anonymous"
password="me@myorg.com">

<fileset>
<include name="**/*.tmp"/>

</fileset>
</ftp>

Logs in to ftp.apache.org as anonymous and tries to delete all *.tmp files from
the default directory for that user. If you don’t have permission to delete a file,
a BuildException is thrown. Listing Files

<ftp action="list"
server="ftp.apache.org"
userid="anonymous"

226 of 389

5.3 Optional Tasks 227

password="me@myorg.com"
listing="data/ftp.listing">

<fileset>
<include name="**"/>

</fileset>
</ftp>

This provides a file listing in data/ftp.listing of all the files on the FTP server
relative to the default directory of the anonymous user. The listing is in what-
ever format the FTP server normally lists files.

Creating Directories

Note that with the mkdir action, the directory to create is specified using the
remotedir attribute.

<ftp action="mkdir"
server="ftp.apache.org"
userid="anonymous"
password="me@myorg.com"
remotedir="some/remote/dir"/>

This creates the directory some/remote/dir beneath the default root directory.
As with all other actions, the directory separator character must be correct
according to the desires of the FTP server.

5.3.10 IContract

Description

Instruments Java classes with iContract DBC preprocessor. The task can gen-
erate a properties file for iControl, a graphical user interface that lets you turn
on/off assertions. iControl generates a control file that you can refer to from
this task using the controlfile attribute.

227 of 389

228 Ant Tasks

Parameters

Attribute Description Required
srcdir Location of the java files. Yes
instrumentdir Indicates where the instrumented source files

should go.
Yes

repositorydir Indicates where the repository source files
should go.

Yes

builddir Indicates where the compiled instrumented
classes should go. Defaults to the value of in-
strumentdir. NOTE: Don’t use the same di-
rectory for compiled instrumented classes and
uninstrumented classes. It will break the de-
pendency checking. (Classes will not be rein-
strumented if you change them).

No

repbuilddir Indicates where the compiled repository
classes should go. Defaults to the value of
repositorydir.

No

pre Indicates whether or not to instrument for pre-
conditions. Defaults to true unless controlfile
is specified, in which case it defaults to false.

No

post Indicates whether or not to instrument for
postconditions. Defaults to true unless con-
trolfile is specified, in which case it defaults to
false.

No

invariant Indicates whether or not to instrument for in-
variants. Defaults to true unless controlfile is
specified, in which case it defaults to false.

No

failthrowable The full name of the Throwable (Exception)
that should be thrown when an assertion is
violated. Defaults to java.lang.Error

No

verbosity Indicates the verbosity level of iCon-
tract. Any combination of er-
ror*,warning*,note*,info*,progress*,debug*
(comma separated) can be used. Defaults to
error*

No

quiet Indicates if iContract should be quiet. Turn
it off if many your classes extend uninstru-
mented classes and you don’t want warnings
about this. Defaults to false

No

updateicontrol If set to true, it indicates that the properties
file for iControl in the current directory should
be updated (or created if it doesn’t exist). De-
faults to false.

No

controlfile The name of the control file to pass to iCon-
tract. Consider using iControl to generate the
file. Default is not to pass a file.

Only if updateicon-
trol=true

classdir Indicates where compiled (unistrumented)
classes are located. This is required in order
to properly update the icontrol.properties file,
not for instrumentation.

Only if updateicon-
trol=true

targets Name of the file that will be generated by this
task, which lists all the classes that iContract
will instrument. If specified, the file will not
be deleted after execution. If not specified, a
file will still be created, but it will be deleted
after execution.

No

228 of 389

5.3 Optional Tasks 229

Note: iContract will use the java compiler indicated by the project’s build.compiler
property. See documentation of the Javac task for more information. Nested
includes and excludes are also supported.

Example

Note: iContract will use the java compiler indicated by the project’s build.compiler
property. See documentation of the Javac task for more information.

Nested includes and excludes can be done very much the same way as any
subclass of MatchingTask.

Example

<icontract
srcdir="${build.src}"
instrumentdir="${build.instrument}"
repositorydir="${build.repository}"
builddir="${build.instrclasses}"
updateicontrol="true"
classdir="${build.classes}"
controlfile="control"
targets="targets"
verbosity="error*,warning*"
quiet="true"

>
<classpath refid="compile-classpath"/>

</icontract>

5.3.11 Jarlib-available

Description

Check whether an extension is present in a fileset or an extensionSet. If the
extension is present then a property is set.

Note that this task works with extensions as defined by the ”Optional Pack-
age” specification. For more information about optional packages, see the docu-
ment Optional Package Versioning in the documentation bundle for your Java2
Standard Edition package, in file guide/extensions/versioning.html or online at
http://java.sun.com/j2se/1.3/docs/guide/extensions/versioning.html.

See the Extension and ExtensionSet documentation for further details

229 of 389

230 Ant Tasks

Parameters

Attribute Description Required
property The name of property to set if extensions is

available.
Yes

file The file to check for extension No, one of file,
nested Extension-
Set or nested fileset
must be present.

Parameters specified as nested elements

extension

Extension the extension to search for.
fileset

FileSets are used to select sets of files to check for extension.
extensionSet

ExtensionSets is the set of extensions to search for extension in.
Examples

Search for extension in single file

<jarlib-available property="myext.present" file="myfile.jar">
<extension

extensionName="org.apache.tools.ant"
specificationVersion="1.4.9"
specificationVendor="Apache Software Foundation"/>

</jarlib-available>

Search for extension in single file refencing external Extension

<extension id="myext"
extensionName="org.apache.tools.ant"
specificationVersion="1.4.9"
specificationVendor="Apache Software Foundation"/>

<jarlib-available property="myext.present" file="myfile.jar">
<extension refid="myext"/>

</jarlib-available>

Search for extension in fileset

<extension id="myext"
extensionName="org.apache.tools.ant"
specificationVersion="1.4.9"

230 of 389

5.3 Optional Tasks 231

specificationVendor="Apache Software Foundation"/>

<jarlib-available property="myext.present">
<extension refid="myext"/>
<fileset dir="lib">
<include name="*.jar"/>

</fileset>
</jarlib-available>

Search for extension in extensionSet

<extension id="myext"
extensionName="org.apache.tools.ant"
specificationVersion="1.4.9"
specificationVendor="Apache Software Foundation"/>

<jarlib-available property="myext.present">
<extension refid="myext"/>
<extensionSet id="exts3">
<libfileset

includeUrl="false"
includeImpl="true"
dir="lib">
<include name="*.jar"/>

</libfileset>
</extensionSet>

</jarlib-available>

5.3.12 Jarlib-display

Description

Display the ”Optional Package” and ”Package Specification” information con-
tained within the specified jars.

Note that this task works with extensions as defined by the ”Optional Pack-
age” specification. For more information about optional packages, see the docu-
ment Optional Package Versioning in the documentation bundle for your Java2
Standard Edition package, in file guide/extensions/versioning.html or online at
http://java.sun.com/j2se/1.3/docs/guide/extensions/versioning.html.

See the Extension and ExtensionSet documentation for further details

Parameters

Attribute Description Required
file The file to display extension information

about.
No, but one of file
or fileset must be
present.

231 of 389

232 Ant Tasks

Parameters specified as nested elements

fileset

FileSets contain list of files to display Extension information about.
Examples

Display Extension info for a single file

<jarlib-display file="myfile.jar">

Display Extension info for a fileset

<jarlib-display>
<fileset dir="lib">

<include name="*.jar"/>
</fileset>

</jarlib-display>

5.3.13 Jarlib-manifest

Description

Task to generate a manifest that declares all the dependencies in manifest. The
dependencies are determined by looking in the specified path and searching for
Extension / ”Optional Package” specifications in the manifests of the jars.

Note that this task works with extensions as defined by the ”Optional Pack-
age” specification. For more information about optional packages, see the docu-
ment Optional Package Versioning in the documentation bundle for your Java2
Standard Edition package, in file guide/extensions/versioning.html or online at
http://java.sun.com/j2se/1.3/docs/guide/extensions/versioning.html.

See the Extension and ExtensionSet documentation for further details

Parameters

Attribute Description Required
destfile The file to generate Manifest into Yes.

Parameters specified as nested elements

extension

Extension the extension that this library implements.
depends

ExtensionSets containing all dependencies for jar.
options

ExtensionSets containing all optional dependencies for jar. (Optional de-
pendencies will be used if present else they wilkl be ignored)

232 of 389

5.3 Optional Tasks 233

Examples

Basic Manifest generated for single Extension

<extension id="e1"
extensionName="MyExtensions"
specificationVersion="1.0"
specificationVendor="Peter Donald"
implementationVendorID="vv"
implementationVendor="Apache"
implementationVersion="2.0"
implementationURL="http://somewhere.com"/>

<jarlib-manifest destfile="myManifest.txt">
<extension refid="e1"/>

</jarlib-manifest>

Search for extension in fileset
A large example with required and optional dependencies

<extension id="e1"
extensionName="MyExtensions"
specificationVersion="1.0"
specificationVendor="Peter Donald"
implementationVendorID="vv"
implementationVendor="Apache"
implementationVersion="2.0"
implementationURL="http://somewhere.com"/>

<extensionSet id="option.ext">
<libfileset dir="lib/option">

<include name="**/*.jar"/>
</libfileset>

</extensionSet>

<extensionSet id="depends.ext">
<libfileset dir="lib/required">

<include name="*.jar"/>
</libfileset>

</extensionSet>

<jarlib-manifest destfile="myManifest.txt">
<extension refid="e1"/>
<depends refid="depends.ext"/>
<options refid="option.ext"/>

</jarlib-manifest>

233 of 389

234 Ant Tasks

5.3.14 Jarlib-resolve

Description

Try to locate a jar to satisfy an extension and place location of jar into property.
The task allows you to add a number of resolvers that are capable of locating
a library for a specifc extension. Each resolver will be attempted in specified
order until library is found or no resolvers are left. If no resolvers are left and
failOnError is true then a BuildException will be thrown.

Note that this task works with extensions as defined by the ”Optional Pack-
age” specification. For more information about optional packages, see the docu-
ment Optional Package Versioning in the documentation bundle for your Java2
Standard Edition package, in file guide/extensions/versioning.html or online at
http://java.sun.com/j2se/1.3/docs/guide/extensions/versioning.html.

See the Extension and ExtensionSet documentation for further details

Parameters

Attribute Description Required
property The name of property to set to library loca-

tion.
Yes

failOnError True if failure to locate library should result
in build exception.

No, defaults to
true.

checkExtension True if librarys returned by nested resolvers
should be checked to see if they supply exten-
sion.

No, defaults to
true.

Parameters specified as nested elements

extension

Extension the extension to resolve. Must be present
location

The location sub element allows you to look for a library in a location relative
to project directory.

Attribute Description Required
location The pathname of library. Yes

url

The url resolver allows you to download a library from a URL to a local file.

234 of 389

5.3 Optional Tasks 235

Attribute Description Required
url The URL to download. Yes
destfile The file to download URL into. No, But one of dest-

file or destdir must
be present

destdir The directory in which to place downloaded
file.

No, But one of dest-
file or destdir must
be present

ant

The ant resolver allows you to run a ant build file to generate a library.
Attribute Description Required
antfile The build file. Yes
destfile The file that the ant build creates. Yes
target The target to run in build file. No

Examples

Resolve Extension to file. If file does not exist or file does not implement exten-
sion then throw an exception.

<extension id="dve.ext"
extensionName="org.realityforge.dve"
specificationVersion="1.2"
specificationVendor="Peter Donald"/>

<jarlib-resolve property="dve.library">
<extension refid="dve.ext"/>
<location location="/opt/jars/dve.jar"/>

</jarlib-resolve>

Resolve Extension to url. If url does not exist or can not write to destfile or
files does not implement extension then throw an exception.

<extension id="dve.ext"
extensionName="org.realityforge.dve"
specificationVersion="1.2"
specificationVendor="Peter Donald"/>

<jarlib-resolve property="dve.library">
<extension refid="dve.ext"/>
<url url="http://www.realityforge.net/jars/dve.jar" destfile="lib/dve.jar"/>

</jarlib-resolve>

Resolve Extension to file produce by ant build. If file does not get produced or
ant file is missing or build fails then throw an exception (Note does not check
that library implements extension).

235 of 389

236 Ant Tasks

<extension id="dve.ext"
extensionName="org.realityforge.dve"
specificationVersion="1.2"
specificationVendor="Peter Donald"/>

<jarlib-resolve property="dve.library" checkExtension="false">
<extension refid="dve.ext"/>
<ant antfile="../dve/build.xml" target="main" destfile="lib/dve.jar"/>

</jarlib-resolve>

Resolve Extension via multiple methods. First check local file to see if it im-
plements extension. If it does not then try to build it from source in parralel
directory. If that fails then finally try to download it from a website. If all steps
fail then throw a build exception.

<extension id="dve.ext"
extensionName="org.realityforge.dve"
specificationVersion="1.2"
specificationVendor="Peter Donald"/>

<jarlib-resolve property="dve.library">
<extension refid="dve.ext"/>
<location location="/opt/jars/dve.jar"/>
<ant antfile="../dve/build.xml" target="main" destfile="lib/dve.jar"/>
<url url="http://www.realityforge.net/jars/dve.jar" destfile="lib/dve.jar"/>

</jarlib-resolve>

5.3.15 JavaCC

Description

Invokes the JavaCC compiler compiler on a grammar file.

To use the javacc task, set the target attribute to the name of the grammar
file to process. You also need to specify the directory containing the JavaCC
installation using the javacchome attribute, so that ant can find the JavaCC
classes. Optionally, you can also set the outputdirectory to write the generated
file to a specific directory. Otherwise javacc writes the generated files to the
directory containing the grammar file.

This task only invokes JavaCC if the grammar file is newer than the gener-
ated Java files. javacc assumes that the Java class name of the generated parser
is the same as the name of the grammar file, ignoring the .jj. If this is not the
case, the javacc task will still work, but it will always generate the output files.

236 of 389

5.3 Optional Tasks 237

Parameters

Attribute Description Required
target The grammar file to process. Yes
javacchome The directory containing the JavaCC distribu-

tion.
Yes

outputdirectory The directory to write the generated files to.
If not set, the files are written to the directory
containing the grammar file.

No

buildparser Sets the BUILD PARSER grammar option.
This is a boolean option.

No

buildtokenmanager Sets the BUILD TOKEN MANAGER gram-
mar option. This is a boolean option.

No

cachetokens Sets the CACHE TOKENS grammar option.
This is a boolean option.

No

choiceambiguitycheck Sets the CHOICE AMBIGUITY CHECK
grammar option. This is an integer option.

No

commontokenaction Sets the COMMON TOKEN ACTION gram-
mar option. This is a boolean option.

No

debuglookahead Sets the DEBUG LOOKAHEAD grammar
option. This is a boolean option.

No

237 of 389

238 Ant Tasks

Attribute Description Required
debugparser Sets the DEBUG PARSER grammar option.

This is a boolean option.
No

debugtokenmanager Sets the DEBUG TOKEN MANAGER gram-
mar option. This is a boolean option.

No

errorreporting Sets the ERROR REPORTING grammar op-
tion. This is a boolean option.

No

forcelacheck Sets the FORCE LA CHECK grammar op-
tion. This is a boolean option.

No

ignorecase Sets the IGNORE CASE grammar option.
This is a boolean option.

No

javaunicodeescape Sets the JAVA UNICODE ESCAPE gram-
mar option. This is a boolean option.

No

lookahead Sets the LOOKAHEAD grammar option.
This is an integer option.

No

optimizetokenmanager Sets the OPTIMIZE TOKEN MANAGER
grammar option. This is a boolean option.

No

otherambiguitycheck Sets the OTHER AMBIGUITY CHECK
grammar option. This is an integer option.

No

sanitycheck Sets the SANITY CHECK grammar option.
This is a boolean option.

No

static Sets the STATIC grammar option. This is a
boolean option.

No

unicodeinput Sets the UNICODE INPUT grammar option.
This is a boolean option.

No

usercharstream Sets the USER CHAR STREAM grammar
option. This is a boolean option.

No

usertokenmanager Sets the USER TOKEN MANAGER gram-
mar option. This is a boolean option.

No

Example

<javacc
target="src/Parser.jj"
outputdirectory="build/src"
javacchome="c:/program files/JavaCC"
static="true"

/>

This invokes JavaCC on grammar file src/Parser.jj, writing the generated files to
build/src. The grammar option STATIC is set to true when invoking JavaCC.

5.3.16 Javah

Description

Generates JNI headers from a Java class.

238 of 389

5.3 Optional Tasks 239

When this task executes, it will generate the C header and source files that
are needed to implement native methods. JNI operates differently depending
on whether JDK1.2 (or later) or pre-JDK1.2 systems are used.

Parameters

Attribute Description Required
class the fully-qualified name of the class (or classes,

separated by commas)
Yes

outputFile concatenates the resulting header or source
files for all the classes listed into this file

Yes

destdir sets the directory where javah saves the header
files or the stub

files.

force specifies that output files should always be
written (JDK1.2 only)

No

old specifies that old JDK1.0-style header files
should be generated (otherwise output file
contain JNI-style native method function pro-
totypes) (JDK1.2 only)

No

stubs generate C declarations from the Java object
file (used with old)

No

verbose causes Javah to print a message concerning
the status of the generated files

No

classpath the classpath to use. No
bootclasspath location of bootstrap class files. No
extdirs location of installed extensions. No

Either outputFile or destdir must be supplied, but not both. Examples

<javah destdir="c" class="org.foo.bar.Wibble"/>

makes a JNI header of the named class, using the JDK1.2 JNI model. Assuming
the directory ’c’ already exists, the file org foo bar Wibble.h is created there. If
this file already exists, it is left unchanged.

<javah outputFile="wibble.h">
<class name="org.foo.bar.Wibble,org.foo.bar.Bobble"/>

</javah>

is similar to the previous example, except the output is written to a file called
wibble.h in the current directory.

<javah destdir="c" force="yes">
<class name="org.foo.bar.Wibble"/>
<class name="org.foo.bar.Bobble"/>
<class name="org.foo.bar.Tribble"/>

</javah>

239 of 389

240 Ant Tasks

writes three header files, one for each of the classes named. Because the force op-
tion is set, these header files are always written when the Javah task is invoked,
even if they already exist.

<javah destdir="c" verbose="yes" old="yes" force="yes">
<class name="org.foo.bar.Wibble"/>
<class name="org.foo.bar.Bobble"/>
<class name="org.foo.bar.Tribble"/>

</javah>
<javah destdir="c" verbose="yes" stubs="yes" old="yes" force="yes">

<class name="org.foo.bar.Wibble"/>
<class name="org.foo.bar.Bobble"/>
<class name="org.foo.bar.Tribble"/>

</javah>

writes the headers for the three classes using the ’old’ JNI format, then writes
the corresponding .c stubs. The verbose option will cause Javah to describe its
progress.

5.3.17 JspC

Description

Ant task to run the JSP compiler and turn JSP pages into Java source.
It can be used to precompile JSP pages for fast initial invocation of JSP

pages, deployment on a server without the full JDK installed, or simply to
syntax check the pages without deploying them. In most cases, a javac task is
usually the next stage in the build process. The task does basic dependency
checking to prevent unnecessary recompilation -this checking compares source
and destination timestamps, and does not factor in class or taglib dependencies,
or <jsp:include> references.

By default the task uses the Jasper JSP compiler. This means the task needs
jasper.jar and jasper-runtime.jar, which come with builds of Tomcat 4/Catalina
from the Jakarta Tomcat project. We recommend Tomcat version 4.1.x for the
most robust version of jasper.

There are many limitations with this task which partially stem from the
many versions of Jasper, others from implementation ’issues’ in the task (i.e.
nobody’s willingness to radically change large bits of it to work around jasper).
Because of this and the fact that JSP pages do not have to be portable across
implementations -or versions of implementations- this task is better used for
validating JSP pages before deployment, rather than precompiling them. For
that, just deploy and run your httpunit junit tests after deployment to compile
and test your pages, all in one go.

Parameters

The Task has the following attributes:

240 of 389

5.3 Optional Tasks 241

Attribute Description Required
destdir Where to place the generated files. They

are located under here according to the given
package name.

Yes

srcdir Where to look for source jsp files. Yes
verbose The verbosity integer to pass to the compiler.

Default=”0”
No

package Name of the destination package for generated
java classes.

No

compiler class name of a JSP compiler adapter, such as
”jasper” or ”jasper41”

No -defaults to
”jasper”

ieplugin Java Plugin classid for Internet Explorer. No
mapped (boolean) Generate separate write() calls for

each HTML line in the JSP.
No

classpath The classpath to use to run the jsp compiler.
This can also be specified by the nested ele-
ment classpath Path).

No, but it seems to
work better when
used

classpathref A Reference. As per classpath No
failonerror flag to control action on compile failures: de-

fault=yes
No

uribase The uri context of relative URI references in
the JSP pages. If it does not exist then it is
derived from the location of the file relative to
the declared or derived value of uriroot.

No

uriroot The root directory that uri files should be re-
solved against.

No

compiler Class name of jsp compiler adapter to use. De-
faults to the standard adapter for Jasper.

No

compilerclasspath The classpath used to find the compiler
adapter specified by the compiler attribute.

No

webinc Output file name for the fraction of web.xml
that lists servlets.

No

webxml File name for web.xml to be generated No
The mapped option will, if set to true, split the JSP text content into a one

line per call format. There are comments above and below the mapped write
calls to localize where in the JSP file each line of text comes from. This can lead
to a minor performance degradation (but it is bound by a linear complexity).
Without this options all adjacent writes are concatenated into a single write.

The ieplugin option is used by the <jsp:plugin> tags. If the Java Plug-in
COM Class-ID you want to use changes then it can be specified here. This
should not need to be altered.

uriroot specifies the root of the web application. This is where all absolute
uris will be resolved from. If it is not specified then the first JSP page will be
used to derive it. To derive it each parent directory of the first JSP page is
searched for a WEB-INF directory, and the directory closest to the JSP page

241 of 389

242 Ant Tasks

that has one will be used. If none can be found then the directory Jasperc was
called from will be used. This only affects pages translated from an explicitly
declared JSP file -including references to taglibs

uribase is used to establish the uri context of relative URI references in the
JSP pages. If it does not exist then it is derived from the location of the file
relative to the declared or derived value of uriroot. This only affects pages
translated from an explicitly declared JSP file.

Parameters specified as nested elements

This task is a directory based task, like javac, so the jsp files to be compiled
are located as java files are by javac. That is, elements such as includes and
excludes can be used directly inside the task declaration.

Elements specific to the jspc task are:-
classpath

The classpath used to compile the JSP pages, specified as for any other
classpath.

classpathref

a reference to an existing classpath
webapp

Instructions to jasper to build an entire web application. The base directory
must have a WEB-INF subdirectory beneath it. When used, the task hands off
all dependency checking to the compiler.

Attribute Description Required
basedir the base directory of the web application Yes

Example

<jspc srcdir="${basedir}/src/war"
destdir="${basedir}/gensrc"
package="com.i3sp.jsp"
compiler="jasper41"
verbose="9">

<include name="**/*.jsp" />
</jspc>

Build all jsp pages under src/war into the destination /gensrc, in a package
heirarchy beginning with com.i3sp.jsp.

<jspc
destdir="interim"
verbose="1"
srcdir="src"
compiler="jasper41"

242 of 389

5.3 Optional Tasks 243

package="com.i3sp.jsp">
<include name="**/*.jsp" />

</jspc>
<depend

srcdir="interim"
destdir="build"
cache="build/dependencies"
classpath="lib/taglibs.jar"/>

<javac
srcdir="interim"
destdir="build"
classpath="lib/taglibs.jar"
debug="on"/>

Generate jsp pages then javac them down to bytecodes. Include lib/taglib jar
in the java compilation. Dependency checking is used to scrub the java files if
class dependencies indicate it is needed.

Notes

Using the package attribute it is possible to identify the resulting java files and
thus do full dependency checking - this task should only rebuild java files if their
jsp file has been modified. However, this only works with some versions of jasper.
By default the checking supports tomcat 4.0.x with the ”jasper” compiler, set
the compiler to ”jasper41” for the tomcat4.1.x dependency checking. Even when
it does work, changes in .TLD imports or in compile time includes do not get
picked up.

Jasper generates JSP pages against the JSP1.2 specification -an implemen-
tation of version 2.3 of the servlet specification is needed to compile or run the
java code.

5.3.18 JDepend

Description

Invokes the JDepend parser.
This parser ”traverses a set of Java source file directories and generates de-

sign quality metrics for each Java package”. It allows to ”automatically measure
the quality of a design in terms of its extensibility, reusability, and maintain-
ability to effectively manage and control package dependencies.”

Source file directories are defined by nested <sourcespath>, see nested ele-
ments.

Optionally, you can also set the outputfile name where the output is stored.
By default the task writes its report to the standard output.

The task requires at least the JDepend 1.2 version.

243 of 389

244 Ant Tasks

Note: whereas the JDepend tool can be customized to exclude some pack-
ages, the current jdepend And Task does not have parameters to allow these
exclusions. Read JDepend specific documentation for that purpose.

Parameters

Attribute Description Required
outputfile The output file name. If not set, the output

is printed on the standard output.
No

format The format to write the output in. The default
is ”text”, the alternative is ”xml”

No

fork Run the tests in a separate VM. No, default is ”off”
haltonerror Stop the build process if an error occurs during

the jdepend analysis.
No, default is ”off”

timeout Cancel the operation if it doesn’t finish in the
given time (measured in milliseconds). (Ig-
nored if fork is disabled.)

No

jvm The command used to invoke the Java Virtual
Machine, default is ’java’. The command is re-
solved by java.lang.Runtime.exec(). (Ignored
if fork is disabled.)

No, default ”java”

dir The directory to invoke the VM in. (Ignored
if fork is disabled)

No

classpathref the classpath to use, given as reference to a
PATH defined elsewhere.

No

Nested Elements

jdepend supports two nested elements <classpath> and <sourcespath>, that
represent PATH like structures.

<sourcespath> is used to define the paths of the source code to analyze.

Examples

<jdepend classpathref="base.path">
<sourcespath>

<pathelement location="src"/>
</sourcespath>

</jdepend>

This invokes JDepend on the src directory, writing the output on the standard
output. The classpath is defined using a classpath reference.

<jdepend outputfile="docs/jdepend.xml" fork="yes" format="xml">
<sourcespath>

<pathelement location="src"/>
</sourcespath>

244 of 389

5.3 Optional Tasks 245

<classpath>
<pathelement location="classes"/>
<pathelement location="lib/jdepend.jar"/>

</classpath>
</jdepend>

This invokes JDepend in a separate VM on the src and testsrc directories,
writing the output to the ¡docs/jdepend.xml¿ file in xml format. The classpath
is defined using nested elements.

5.3.19 JJTree

Description

Invokes the JJTree preprocessor for the JavaCC compiler compiler. It inserts
parse tree building actions at various places in the JavaCC source that it gen-
erates. The output of JJTree is run through JavaCC to create the parser.

To use the jjtree task, set the target attribute to the name of the jjtree
grammar file to process. You also need to specify the directory containing
the JavaCC installation using the javacchome attribute, so that ant can find
the JavaCC classes. Optionally, you can also set the outputdirectory to write
the generated file to a specific directory. Otherwise jjtree writes the generated
JavaCC grammar file to the directory containing the JJTree grammar file.

This task only invokes JJTree if the grammar file is newer than the generated
JavaCC file.

245 of 389

246 Ant Tasks

Parameters

Attribute Description Required
target The jjtree grammar file to process. Yes
javacchome The directory containing the JavaCC distribu-

tion.
Yes

outputdirectory The directory to write the generated file to. If
not set, the files are written to the directory
containing the grammar file.

No

buildnodefiles Sets the BUILD NODE FILES grammar op-
tion. This is a boolean option.

No

multi Sets the MULTI grammar option. This is a
boolean option.

No

nodedefaultvoid Sets the NODE DEFAULT VOID grammar
option. This is a boolean option.

No

nodefactory Sets the NODE FACTORY grammar option.
This is boolean option.

No

nodescopehook Sets the NODE SCOPE HOOK grammar op-
tion. This is a boolean option.

No

nodeusesparser Sets the NODE USES PARSER grammar op-
tion. This is a boolean option.

No

static Sets the STATIC grammar option. This is a
boolean option.

No

visitor Sets the VISITOR grammar option. This is a
boolean option.

No

nodepackage Sets the NODE PACKAGE grammar option.
This is a string option.

No

visitorexception Sets the VISITOR EXCEPTION grammar
option. This is a string option.

No

nodeprefix Sets the NODE PREFIX grammar option.
This is a string option.

No

Example

<jjtree
target="src/Parser.jjt"
outputdirectory="build/src"
javacchome="c:/program files/JavaCC"
nodeusesparser="true"

/>

This invokes JJTree on grammar file src/Parser.jjt, writing the generated gram-
mar file, Parser.jj, file to build/src. The grammar option NODE USES PARSER
is set to true when invoking JJTree.

246 of 389

5.3 Optional Tasks 247

5.3.20 Jlink

Deprecated

This task has been deprecated. Use the zipfileset and zipgroupfileset at-
tributes of the Jar task or Zip task instead.

Description

Links entries from sub-builds and libraries.

The jlink task can be used to build jar and zip files, similar to the jar task.
However, jlink provides options for controlling the way entries from input files
are added to the output file. Specifically, capabilities for merging entries from
multiple zip or jar files is available.

If a mergefile is specified directly (eg. at the top level of a mergefiles pathele-
ment) and the mergefile ends in ”.zip” or ”.jar”, entries in the mergefile will be
merged into the outfile. A file with any other extension will be added to the
output file, even if it is specified in the mergefiles element. Directories specified
in either the mergefiles or addfiles element are added to the output file as you
would expect: all files in subdirectories are recursively added to the output file
with appropriate prefixes in the output file (without merging).

In the case where duplicate entries and/or files are found among the files
to be merged or added, jlink merges or adds the first entry and ignores all
subsequent entries.

jlink ignores META-INF directories in mergefiles. Users should supply their
own manifest information for the output file.

It is possible to refine the set of files that are being jlinked. This can be
done with the includes, includesfile, excludes, excludesfile, and defaultexcludes
attributes on the addfiles and mergefiles nested elements. With the includes
or includesfile attribute you specify the files you want to have included by us-
ing patterns. The exclude or excludesfile attribute is used to specify the files
you want to have excluded. This is also done with patterns. And finally with
the defaultexcludes attribute, you can specify whether you want to use default
exclusions or not. See the section on directory based tasks, on how the in-
clusion/exclusion of files works, and how to write patterns. The patterns are
relative to the base directory.

247 of 389

248 Ant Tasks

Parameters

Attribute Description Required
outfile the path of the output file. Yes
compress whether or not the output should be com-

pressed. true, yes, or on result in compressed
output. If omitted, output will be uncom-
pressed (inflated).

No

mergefiles files to be merged into the output, if possible. At least one of
mergefiles

addfiles files to be added to the output. At least one of
addfiles

Examples

The following will merge the entries in mergefoo.jar and mergebar.jar into
out.jar. mac.jar and pc.jar will be added as single entries to out.jar.

<jlink compress="false" outfile="out.jar">
<mergefiles>

<pathelement path="${build.dir}/mergefoo.jar"/>
<pathelement path="${build.dir}/mergebar.jar"/>

</mergefiles>
<addfiles>

<pathelement path="${build.dir}/mac.jar"/>
<pathelement path="${build.dir}/pc.zip"/>

</addfiles>
</jlink>

Non-deprecated alternative to the above:

<jar compress="false" destfile="out.jar">
<zipgroupfileset dir="${build.dir}">

<include name="mergefoo.jar"/>
<include name="mergebar.jar"/>

</zipgroupfileset>
<fileset dir="${build.dir}">

<include name="mac.jar"/>
<include name="pc.jar"/>

</fileset>
</jar>

Suppose the file foo.jar contains two entries: bar.class and barnone/myClass.zip.
Suppose the path for file foo.jar is build/tempbuild/foo.jar. The following ex-
ample will provide the entry tempbuild/foo.jar in the out.jar.

<jlink compress="false" outfile="out.jar">
<mergefiles>

248 of 389

5.3 Optional Tasks 249

<pathelement path="build/tempbuild"/>
</mergefiles>

</jlink>

However, the next example would result in two top-level entries in out.jar,
namely bar.class and barnone/myClass.zip

<jlink compress="false" outfile="out.jar">
<mergefiles>
<pathelement path="build/tempbuild/foo.jar"/>

</mergefiles>
</jlink>

5.3.21 JProbe Coverage

JProbe

by

* Stephane Bailliez (sbailliez@imediation.com)

This task runs the tools from the JProbe suite. For more information, visit
http://www.sitraka.com. An evaluation version is available for download if you
already don’t own it.

This task has been written using JProbe Suite Server Side 3.0.
It is highly recommended to read the JProbe documentation to understand

the values of the command line arguments described below. This document is
less complete than the manual, it only gives the basic information and is not
intended as a replacement to the manual.

Tasks

JPCoverage Measure coverage of Java code.
JPCovMerge Merge different snapshots into one.
JPCovReport Create a report from a snapshot

JPCoverage

Perform code covering functions by comparing source code line execution to the
programs source code as a whole.

249 of 389

250 Ant Tasks

Parameters

Attribute Description Required
home The directory where JProbe is intalled. Yes
vm Indicates which virtual machine to run. Must

be one of ”jdk117”, ”jdk118” or ”java2”.If
”java2” is specified, the user is also required
to specify a path via javaexe, otherwise it will
check if the current executing VM is 1.2+ and
use its java.home property to determine its lo-
cation.

No, default to em-
bedded VM if 1.2+

javaexe The path to the java executable. No, use only for
java2 vm.

applet Run an applet. The default is false, unless the
file under analysis ends with htm or html.

No, default is
”false”.

seedname Seed name for the temporary snapshot files
(files will be named seed.jpc, seed1.jpc,
seed2.jpc, ...)

No, default to
”snapshot”

exitprompt Toggles display of the console prompt: ”Press
Enter to close this window.” ”always”: Always
displays the prompt. ”never”: Never displays
the prompt. ”error”: Only displays prompt
after an error.

No, default is
”never”

finalsnapshot Type of snapshot to send at program termina-
tion. Must be one of ”none”,”coverage”,”all”

No, default to ”cov-
erage”

recordfromstart Must be one of ”coverage”, ”all”, ”none”. If
you want Coverage to start analyzing as soon
as the program begins to run, use ”all”. If not,
select ”none”.

No, default to ”cov-
erage”

warnlevel Set warning level (0-3, where 0 is the least
amount of warnings).

No, default to 0

snapshotdir The path to the directory where snapshot files
are stored. Choose a directory that is reach-
able by both the remote and local computers,
and enter the same path on the command line
and in the viewer.

No, default to cur-
rent directory

workingdir The physical path to the working directory for
the VM.

No, default is cur-
rent directory.

tracknatives Test native methods. Note that testing native
methods with Java 2 disables the JIT

No, default to
”false”.

classname the name of the class to analyze. Yes

Nested Elements

classpath

250 of 389

5.3 Optional Tasks 251

jpcoverage supports a nested <classpath> element, that represents a PATH
like structure.

jvmarg

Additional parameters may be passed to the VM via nested <jvmarg> at-
tributes, for example:

<jpcoverage home="c:\jprobe" classname="MyClass">
<jvmarg value="-classic"/>
<classpath path="."/>

</jpcoverage>

would run the coverage on ”MyClass” in classic mode VM.
<jvmarg> allows all attributes described in Command line arguments.
arg

Parameters may be passed to the executed class via nested <arg> attributes,
as described in Command line arguments.

socket

Define a host and port to connect to if you want to do remote viewing.
Attribute Description Required
host the host name/ip of the machine on which the

Viewer is running
No, default to local-
host

port The port number on which you will connect
to the Viewer

No, default to 4444

filters

Defines class/method filters based on pattern matching. The syntax is filters
is similar to a fileset.

Attribute Description Required
defaultexclude As a default, the coverage excludes all classes

and methods. Default filters are equivalent to

<filters>
<exclude class="*" method="*"/>

</filters>

No, default to
”true”

As seen above, nested elements are include and exclude with a name at-
tribute.

Attribute Description Required
class The class mask as a simple regular expression No, defaults to ”*”
method The method mask as a simple regular expres-

sion
No, defaults to ”*”

enabled is the filter enabled? No, defaults to true
Example of filters

251 of 389

252 Ant Tasks

<filters>
<include class="com.mycompany.*" method="*"/>
<exclude class="com.mycompany.MyClass" method="test*"/>

</filters>

reports the coverage on all packages, classes and methods from com.mycompany
except all methods starting by test on the class MyClass in the package com.mycompany

triggers

Define a number of events to use for interacting with the collection of data
performed during coverage. For example you may run a whole application but
only decide to collect data once it reaches a certain method and once it exits
another one.

The only type of nested element is the method element (triggers are per-
formed on method) and it has the following attributes:

Attribute Description Required
name The name of the method(s) as a regular ex-

pression. The name is the fully qualified name
on the form package.classname.method

Yes

event the event on the method that will trigger the
action. Must be ”enter” or ”exit”.

Yes

action the action to execute. Must be one of ”clear”,
”pause”, ”resume”, ”snapshot”, ”suspend”,
or ”exit”. They respectively clear record-
ing, pause recording, resume recording, take a
snapshot, suspend the recording and exit the
program.

Yes

Example of triggers

<triggers>
<method name="ClassName.*()" event="enter" action="snapshot"/>
<method name="ClassName.MethodName()" event="exit" action="exit"/>

</triggers>

Will take a snapshot when it enters any method of the class ClassName and will
exit the program once it exits the method MethodName of the same class.

JPCovMerge

Description

Perform the merge of several snapshots into a single one.
Parameters

252 of 389

5.3 Optional Tasks 253

Attribute Description Required
home The directory where JProbe is installed. Yes
tofile the output filename that will be the result of

the name.
Yes

verbose Perform the merge in verbose mode giving de-
tails about the snapshot processing.

No. Default to false

jpcovmerge collects snapshots using the nested <FileSet> element. Example
of merge

<jpcovmerge home="c:\jprobe" tofile="merge.jpc" verbose="true">
<fileset dir="./snapshots">

<include name="snap*.jpc"/>
</fileset>

</jpcovmerge>

would run the merge in verbose mode on all snapshot files starting by snap in
the directory snapshots. The resulting file will be named merge.jpc.

JPCovReport

Description

Generate a readable/printable report of a snapshot. Note that you will need
Jakarta Oro in Ant classpath, to run the reference feature.

Parameters

Attribute Description Required
home The directory where JProbe is intalled. Yes
format The format of the generated report. Must be

”xml”, ”html” or ”text”
No, default to
”html”

type The type of report to be generated. Must be
”executive”, ”summary”, ”detailed” or ”very-
detailed”

No. Default to ”de-
tailed”

percent A numeric value for the threshold for printing
methods. Must be between 0 and 100.

No, default to 100

snapshot The name of the snapshot file that is the
source to the report.

Yes

tofile The name of the generated output file Yes
includesource Include text of the source code lines.

Only applies to format=”xml” and
type=”verydetailed”

No. Defaults to
”yes”

sourcepath

Path to source files can be set via nested sourcepath elements that are PATH
like structures. reference (only applies to format=”xml”)

A reference is a set of classes whose coverage information will be checked
against. Since Coverage is only able to give you information about loaded

253 of 389

254 Ant Tasks

classes, it will only report classes that were at least used in some points in your
tests, therefore you will not be able to know what classes are not exercised at all
during your tests. The reference is an additional feature that will analyze the
bytecode of all classes in a given classpath that match some filters and modify
the XML report accordingly. In short, it will:

• remove the classes that do not exists in the reference classpath. (For
example you might have in your report some helper test classes that you
do not want to appear in the report, but are unable to filter without
adding hundred of filters for all your classes).

• add classes that exists in the reference set and match the filters but are
not reported.

• remove abstract methods that are incorrectly reported in JProbe 3.0 (should
be fixed in a later SP)

• remove classes/methods that do not match the filters.

classpath
Path to the reference set of files can be set via nested classpath elements

that are PATH like structures.
filters

Nested elements are include and exclude with a class and method attribute.
Attribute Description Required
class The class mask as a simple regular expression No, default to *
method The method mask as a simple regular expres-

sion
No, default to *

Example of report

<jpcovreport home="c:\jprobe" snapshot="merge.jpc"
format="xml" tofile="result.xml">
<sourcepath path="./src"/>
<reference>

<classpath path="./bin/classes"/>
<filters>

<include class="com.mycompany.*"/>
<exclude class="com.mycompany.MyClass" method="test*"/>

</filters>
</reference>

</jpcovreport>

would generate the report of the file merge.jpc and write it to result.xml using
the source path src. As well, it will modify the result.xml by analyzing all
classes in the ./bin/classes that are port of the package com.mycompany except
the method that start by test from the class MyClass.

254 of 389

5.3 Optional Tasks 255

Recommendation

If you generate your main code and your testcases in a separate directory,
say bin/classes and test/classes. You should mostly end up with a reference
such as:

<reference>
<classpath path="./bin/classes"/>

</reference>

With such a reference, your XML report will be cleaned up against parasite
classes from your testcases (that as a common practice, generally match the
exact package structure of the class you exercise).

HTML reports

You will find in Ant etc directory a stylesheet called coverage-frames.xsl.
This file can be used to generate a framed report a la javadoc similar to the one
for JUnit. It needs either Xalan 1.2.2 or Xalan 2.x.

Xalan 1.2.2 (you must have xalan.jar and bsf.jar in your classpath)

<style processor="xalan" in="./reports/xml/results.xml" out="./reports/html/dummy.file"
style="${ant.home}/etc/coverage-frames.xsl">

<param name="output.dir" expression="’${basedir}/reports/html’"/>
</style>

Xalan 2.x (note the parameter without single quote)

<style processor="trax" in="./reports/xml/results.xml" out="./reports/html/dummy.file"
style="${ant.home}/etc/coverage-frames.xsl">
<param name="output.dir" expression="${basedir}/reports/html"/>

</style>

5.3.22 JUnit

5.3.23 Description

This task runs tests from the JUnit testing framework. The latest version of
the framework can be found at http://www.junit.org. This task has been tested
with JUnit 3.0 up to JUnit 3.8.1; it won’t work with versions prior to JUnit 3.0.

Note: This task depends on external libraries not included in the Ant dis-
tribution. See Library Dependencies for more information.

Note: You must have junit.jar and the class files for the <junit> task in the
same classpath. You can do one of:

1. Put both junit.jar and the optional tasks jar file in ANT HOME/lib.

2. Do not put either in ANT HOME/lib, and instead include their locations
in your CLASSPATH environment variable.

255 of 389

256 Ant Tasks

3. Do neither of the above, and instead, specify their locations using a
<classpath> element in the build file. See the FAQ for details.

Tests are defined by nested test or batchtest tags (see nested elements).

Parameters

Attribute Description Required
printsummary Print one-line statistics for each testcase. Can

take the values on, off, and withOutAndErr.
withOutAndErr is the same as on but also in-
cludes the output of the test as written to Sys-
tem.out and System.err.

No; default is off.

fork Run the tests in a separate VM. No; default is off.
haltonerror Stop the build process if an error occurs during

the test run.
No; default is off.

errorproperty The name of a property to set in the event of
an error.

No

haltonfailure Stop the build process if a test fails (errors are
considered failures as well).

No; default is off.

failureproperty The name of a property to set in the event of a
failure (errors are considered failures as well).

No.

filtertrace Filter out Junit and Ant stack frames from
error and failure stack traces.

No; default is on.

timeout Cancel the individual tests if they don’t finish
in the given time (measured in milliseconds).
Ignored if fork is disabled.

No

maxmemory Maximum amount of memory to allocate to
the forked VM. Ignored if fork is disabled.

No

jvm The command used to invoke the Java Virtual
Machine, default is ’java’. The command is
resolved by java.lang.Runtime.exec(). Ignored
if fork is disabled.

No; default is java.

dir The directory in which to invoke the VM. Ig-
nored if fork is disabled.

No

newenvironment Do not propagate the old environment when
new environment variables are specified. Ig-
nored if fork is disabled.

No; default is false.

includeantruntime Implicitly add the Ant classes required to run
the tests and JUnit to the classpath in forked
mode.

No; default is true.

showoutput Send any output generated by tests to Ant’s
logging system as well as to the formatters. By
default only the formatters receive the output.

No

By using the errorproperty and failureproperty attributes, it is possible to
perform setup work (such as starting an external server), execute the test, clean

256 of 389

5.3 Optional Tasks 257

up, and still fail the build in the event of a failure.
The filtertrace attribute condenses error and failure stack traces before re-

porting them. It works with both the plain and XML formatters. It filters out
any lines that begin with the following string patterns:

"junit.framework.TestCase"
"junit.framework.TestResult"
"junit.framework.TestSuite"
"junit.framework.Assert."
"junit.swingui.TestRunner"
"junit.awtui.TestRunner"
"junit.textui.TestRunner"
"java.lang.reflect.Method.invoke("
"org.apache.tools.ant."

Nested Elements

The <junit> task supports a nested <classpath> element that represents a
PATH like structure.

jvmarg

If fork is enabled, additional parameters may be passed to the new VM via
nested <jvmarg> elements. For example:

<junit fork="yes">
<jvmarg value="-Djava.compiler=NONE"/>
...

</junit>

would run the test in a VM without JIT.
<jvmarg> allows all attributes described in Command-line Arguments.
sysproperty

Use nested <sysproperty> elements to specify system properties required
by the class. These properties will be made available to the VM during the
execution of the test (either ANT’s VM or the forked VM, if fork is enabled).
The attributes for this element are the same as for environment variables.

<junit fork="no">
<sysproperty key="basedir" value="${basedir}"/>
...

</junit>

would run the test in ANT’s VM and make the basedir property available to
the test.

env

257 of 389

258 Ant Tasks

It is possible to specify environment variables to pass to the forked VM via
nested <env> elements. For a description of the <env> element’s attributes, see
the description in the exec task.

Settings will be ignored if fork is disabled.

formatter

The results of the tests can be printed in different formats. Output will
always be sent to a file, unless you set the usefile attribute to false. The name
of the file is determined by the name of the test and can be set by the outfile
attribute of <test>.

There are three predefined formatters - one prints the test results in XML
format, the other emits plain text. The formatter named brief will only print
detailed information for testcases that failed, while plain gives a little statistics
line for all test cases. Custom formatters that need to implement
org.apache.tools.ant.taskdefs.optional.junit.JUnitResultFormatter can be spec-
ified.

If you use the XML formatter, it may not include the same output that your
tests have written as some characters are illegal in XML documents and will be
dropped.

Attribute Description Required

type
classname

Use a predefined formatter (either xml, plain,
or brief).
Name of a custom formatter class.

Exactly one of
these.

extension Extension to append to the output filename. Yes, if classname
has been used.

usefile Boolean that determines whether output
should be sent to a file.

No; default is true.

test

Defines a single test class.

258 of 389

5.3 Optional Tasks 259

Attribute Description Required
name Name of the test class. Yes
fork Run the tests in a separate VM. Overrides

value set in <junit>.
No

haltonerror Stop the build process if an error occurs during
the test run. Overrides value set in <junit>.

No

errorproperty The name of a property to set in the event of
an error. Overrides value set in <junit>.

No

haltonfailure Stop the build process if a test fails (errors are
considered failures as well). Overrides value
set in <junit>.

No

failureproperty The name of a property to set in the event of a
failure (errors are considered failures as well).
Overrides value set in <junit>.

No

filtertrace Filter out Junit and Ant stack frames from
error and failure stack traces. Overrides value
set in <junit>.

No; default is on.

todir Directory to write the reports to. No; default is the
current directory.

outfile Base name of the test result. The full file-
name is determined by this attribute and the
extension of formatter.

No; default is
TEST-name, where
name is the name of
the test specified in
the name attribute.

if Only run test if the named property is set. No
unless Only run test if the named property is not set. No

Tests can define their own formatters via nested <formatter> elements.

batchtest

Define a number of tests based on pattern matching.

batchtest collects the included files from any number of nested <fileset>s.
It then generates a test class name for each file that ends in .java or .class.

259 of 389

260 Ant Tasks

Attribute Description Required
fork Run the tests in a separate VM. Overrides

value set in <junit>.
No

haltonerror Stop the build process if an error occurs during
the test run. Overrides value set in <junit>.

No

errorproperty The name of a property to set in the event of
an error. Overrides value set in <junit>.

No

haltonfailure Stop the build process if a test fails (errors are
considered failures as well). Overrides value
set in <junit>.

No

failureproperty The name of a property to set in the event of a
failure (errors are considered failures as well).
Overrides value set in <junit>

No

filtertrace Filter out Junit and Ant stack frames from
error and failure stack traces. Overrides value
set in <junit>.

No; default is on.

todir Directory to write the reports to. No; default is the
current directory.

if Only run tests if the named property is set. No
unless Only run tests if the named property is not

set.
No

Batchtests can define their own formatters via nested <formatter> elements.
bf Examples

<junit>
<test name="my.test.TestCase"/>

</junit>

Runs the test defined in my.test.TestCase in the same VM. No output will be
generated unless the test fails.

<junit printsummary="yes" fork="yes" haltonfailure="yes">
<formatter type="plain"/>
<test name="my.test.TestCase"/>

</junit>

Runs the test defined in my.test.TestCase in a separate VM. At the end of the
test, a one-line summary will be printed. A detailed report of the test can be
found in TEST-my.test.TestCase.txt. The build process will be stopped if the
test fails.

<junit printsummary="yes" haltonfailure="yes">
<classpath>

<pathelement location="${build.tests}"/>
<pathelement path="${java.class.path}"/>

</classpath>

260 of 389

5.3 Optional Tasks 261

<formatter type="plain"/>

<test name="my.test.TestCase" haltonfailure="no" outfile="result">
<formatter type="xml"/>

</test>

<batchtest fork="yes" todir="${reports.tests}">
<fileset dir="${src.tests}">
<include name="**/*Test*.java"/>
<exclude name="**/AllTests.java"/>

</fileset>
</batchtest>

</junit>

Runs my.test.TestCase in the same VM, ignoring the given CLASSPATH; only
a warning is printed if this test fails. In addition to the plain text test results,
for this test a XML result will be output to result.xml. Then, for each matching
file in the directory defined for ${src.tests} a test is run in a separate VM. If
a test fails, the build process is aborted. Results are collected in files named
TEST-name.txt and written to ${reports.tests}.

5.3.24 JUnitReport

Merge the individual XML files generated by the JUnit task and eventually
apply a stylesheet on the resulting merged document to provide a browsable
report of the testcases results.

Note: This task depends on external libraries not included in the Ant dis-
tribution. See Library Dependencies for more information.

Requirements

The task needs Xalan 2.x; although Xalan 1.2.2 does work, but as Xalan1 is not
supported, we do not recommend this.

If you do you use Xalan 1.2.2 you will need a compatible (older) version of
Xerces. as well as BSF(bsf.jar). Again, using Xalan 2 is simpler and supported.

Parameters

Attribute Description Required
tofile The name of the XML file that will aggregate

all individual XML testsuite previously gener-
ated by the JUnit task.

No. Default
to TESTS-
TestSuites.xml

todir The directory where should be written the file
resulting from the individual XML testsuite
aggregation.

No. Default to cur-
rent directory

261 of 389

262 Ant Tasks

Nested Elements

fileset

junitreport collects individual xml files generated by the JUnit task using
the nested <FileSet> element.

report

Generate a browsable report based on the document created by the merge.
Parameters

Attribute Description Required
format The format of the generated report. Must be

”noframes” or ”frames”.
No, default to
”frames”

styledir The directory where the stylesheets are de-
fined. They must be conforming to the fol-
lowing conventions:

• frames format: the stylesheet must be
named junit-frames.xsl.

• noframes format: the stylesheet must be
named junit-noframes.xsl.

No. Default to em-
bedded stylesheets.

todir The directory where the files resulting from
the transformation should be written to.

No. Default to cur-
rent directory

Example of report

<junitreport todir="./reports">
<fileset dir="./reports">

<include name="TEST-*.xml"/>
</fileset>
<report format="frames" todir="./report/html"/>

</junitreport>

would generate a TESTS-TestSuites.xml file in the directory reports and gen-
erate the default framed report in the directory report/html.

5.3.25 Metamata Metrics

MMetrics

* Stephane Bailliez (sbailliez@imediation.com)

Requirements

This task requires Metamata Development environment 2.0/Webgain Quality
Analyzer 2.0. An evaluation version is available at Webgain. (Though you

262 of 389

5.3 Optional Tasks 263

will not be able to use Metrics from the command line if you do not have a
registered version). You also need a TRaX compliant processor(such as Xalan
2.x) via JAXP 1.1

Description

Invokes the Metamata Metrics / WebGain Quality Analyzer source code ana-
lyzer on a set of Java files.

mmetrics will compute the metrics of a set of Java files and write the results
to an XML file. As a convenience, a stylesheet is given in etc directory, so that
an HTML report can be generated from the XML file.

Parameters

Attribute Description Required
metamatahome The home directory containing the Metamata

distribution.
Yes

tofile The XML were the resulting metrics will be
written to.

Yes

granularity Metrics granularity of the source files. Must
be either files (compilation-units), types
(types and compilation-units) or methods
(methods, types and compilation-units).

Yes

maxmemory Set the maximum memory for the JVM. this
is a convenient way to set the -mx or -Xmx
argument.

No

Nested elements

For specifying the source code to analyze, you can either use a path or fileset
elements (though a single path element is preferred, see note below).

jvmarg

Additional parameters may be passed to the VM via nested <jvmarg> at-
tributes. <jvmarg> allows all attributes described in Command line arguments.

classpath

Sets class path (also source path unless one explicitly set). Overrides META-
PATH/CLASSPATH environment variables. The classpath element represents
a PATH like structure.

sourcepath

Sets source path. Overrides the SOURCEPATH environment variable. The
sourcepath element represents a PATH like structure.

path

263 of 389

264 Ant Tasks

Sets the list of directories to analyze the code for metrics.;It represents a
PATH structure.

fileset

Sets a set of files to analyze for metrics.source It represents a FILESET
structure.

Note: For the sake of readability, it is highly recommended to analyze for
a single unique directory instead than using filesets or several directories. Oth-
erwise there will be multiple metrics outputs without any way to know what
metrics refers to what source. Chance are also that the XML handler that does
some heuristic will be confused by the different outputs.

Example

<mmetrics tofile="mmetrics.xml"
metamatahome="c:/metamata"
granularity="methods">

<classpath>
<pathelement location="c:/metamata/examples/metricsexamples"/>

</classpath>
<sourcepath>

<pathelement location="c:/metamata/examples/metricsexamples"/>
</sourcepath>
<path>

<pathelement location="c:/metamata/examples/metricsexamples"/>
</path>

</mmetrics>

This invokes Metamata Metrics installed in c:/metamata on the metrics exam-
ple. (Note that here, classpath and sourcepath are not normally not needed)
Generating a report As a convenience, there is an XSL file(mmetrics-frames.xsl)
that allows you to generate a full framed HTML report of the metrics. You can
find it in the etc directory of Ant. As it uses the Xalan redirect extensions,
you will need Xalan and Xerces to run it. The stylesheet takes an output.dir
parameter (otherwise it will be generated in the current directory), it can be
run in Ant as follows:

<style in=java "${metrics.xml}" style="mmetrics-frames.xsl" out="null.tmp">
<param name="output.dir" expression="${report.dir}"/>

</style>

5.3.26 Metamata Audit

MAudit

* Stephane Bailliez (sbailliez@imediation.com)

264 of 389

5.3 Optional Tasks 265

Requirements

This task requires Metamata Development environment 2.0/Webgain Quality
Analyzer 2.0. An evaluation version is available at Webgain. , Jakarta Oro and
a XML parser (via JAXP).

Description

Invokes the Metamata Audit/ Webgain Quality Analyzer on a set of Java files.
maudit performs static analysis of the Java source code and byte code files

to find and report errors of style and potential problems related to performance,
maintenance and robustness. . As a convenience, a stylesheet is given in etc
directory, so that an HTML report can be generated from the XML file.

Parameters

Attribute Description Required
tofile The XML file to which the Audit result should

be written to.
Yes

metamatahome The home directory containing the Metamata
distribution.

Yes

fix Automatically fix certain errors (those marked
as fixable in the manual).

No.Default to false.

list Creates listing file for each audited file. A
.maudit file will be generated in the same lo-
cation as the source file.

No. Default to
false.

unused Finds declarations unused in search paths. It
will look for unused global declarations in the
source code within a use domain specified by
the searchpath element.

No. Default to
false.

maxmemory Set the maximum memory for the JVM. this
is a convenient way to set the -mx or -Xmx
argument.

No

Nested elements

jvmarg

Additional parameters may be passed to the VM via nested <jvmarg> at-
tributes. <jvmarg> allows all attributes described in Command line arguments.

You can avoid using the <jvmarg> by adding these empty entries to meta-
mata.properties located at ${metamata.home}/bin

metamata.classpath=
metamata.sourcepath=
metamata.baseclasspath=

265 of 389

266 Ant Tasks

classpath

Sets class path (also source path unless one explicitly set). Overrides META-
PATH/CLASSPATH environment variables. The classpath element represents
a PATH like structure.

sourcepath

Sets source path. Overrides the SOURCEPATH environment variable. The
sourcepath element represents a PATH like structure.

sourcepath

Sets the search path to use as the use domain when looking for unused global
declarations. The searchpath element represents a PATH like structure.

fileset

Sets the Java files to audit via a FILESET structure. Whatever the filter is,
only the files that ends with .java will be included for processing. Note that the
base directory used for the fileset MUST be the root of the source files otherwise
package names deduced from the file path will be incorrect.

Example

<maudit tofile="c:/metamata/examples/auditexamples/audit.xml"
metamatahome="c:/metamata" fix="yes">

<classpath>
<pathelement location="c:/metamata/examples/auditexamples"/>

</classpath>
<sourcepath>

<pathelement location="c:/metamata/examples/auditexamples"/>
</sourcepath>
<fileset dir="c:/metamata/examples/auditexamples">

<include name="*.java"/>
</fileset>

</maudit>

This invokes Metamata Audit installed in c:/metamata on the audit examples
and fix automatically the fixable errors.

Generating a report

As a convenience, there is an XSL file(mmetrics-frames.xsl) that allows you to
generate a full framed HTML report of the metrics. You can find it in the etc
directory of Ant. As it uses the Xalan redirect extensions, you will need Xalan
and Xerces to run it. The stylesheet takes an output.dir parameter (otherwise
it will be generated in the current directory), it can be run in Ant as follows:

<style in=java "${audit.xml}" style="maudit-frames.xsl" out="null.tmp">

266 of 389

5.3 Optional Tasks 267

<param name="output.dir" expression="${report.dir}"/>
</style>

5.3.27 MimeMail

Deprecated

This task has been deprecated. Use the mail task instead.

Description

Sends SMTP mail with MIME attachments. JavaMail and Java Activation
Framework are required for this task.

Multiple files can be attached using FileSets.

Parameters

Attribute Description Required

message
messageFile

The message body
A filename to read and used as the message
body

No, but only one
of of ’message’ or
’messageFile’ may
be specified. If not
specified, a fileset
must be provided.

messageMimeType MIME type to use for ’message’ or ’message-
File’ when attached.

No, defaults to
”text/plain”

tolist
cclist
bcclist

Comma-separated list of To: recipients
Comma-separated list of CC: recipients
Comma-separated list of BCC: recipients

Yes, at least one
of ’tolist’, ’cclist’,
or ’bcclist’ must be
specified.

mailhost Host name of the mail server. No, default to ”lo-
calhost”

subject Email subject line. No
from Email address of sender. Yes
failonerror Stop the build process if an error occurs send-

ing the e-mail.
No, default to
”true”

Examples

Send a single HTML file as the body of a message

<mimemail messageMimeType="text/html" messageFile="overview-summary.html"
tolist="you" subject="JUnit Test Results: ${TODAY}" from="me"/>

267 of 389

268 Ant Tasks

Sends all files in a directory as attachments

<mimemail message="See attached files"
tolist="you" subject="Attachments" from="me">

<fileset dir=".">
<include name="dist/*.*"/>

</fileset>
</mimemail>

5.3.28 MParse

MParse

by

* Stephane Bailliez (sbailliez@imediation.com)

Requirements

This task requires Metamata Development environment 2.0 freely available at
Metamata.

Description

Invokes the Metamata MParse compiler compiler on a grammar file.

To use the mparse task, set the target attribute to the name of the grammar
file to process. You also need to specify the directory containing the Metamata
installation using the metamatahome attribute, so that Ant can find the MParse
classes.

This task only invokes MParse if the grammar file is newer than the generated
Java files. MParse assumes that the Java class name of the generated parser is
the same as the name of the grammar file, less the .jj extension.

For additional information about MParse, please consult the online manual
available here (PDF)

268 of 389

5.3 Optional Tasks 269

Parameters

Attribute Description Required
target The .jj grammar file to process. It will only

be processed if the grammar is newer than the
corresponding .java file.

Yes

metamatahome The home directory containing the Metamata
distribution.

Yes

verbose Enable all messages No
debugparser Enables parser debugging No
debugscanner Enables scanner debugging No
cleanup Remove the intermediate Sun JavaCC file cre-

ated during the transformation of the gram-
mar file.

No. Default to false

maxmemory Set the maximum memory for the JVM. this
is a convenient way to set the -mx or -Xmx
argument.

No

Nested elements

jvmarg

Additional parameters may be passed to the VM via nested <jvmarg> at-
tributes. <jvmarg> allows all attributes described in Command line arguments.

classpath

Sets class path (also source path unless one explicitly set). Overrides META-
PATH/CLASSPATH environment variables. The classpath element represents
a PATH like structure.

sourcepath

Sets source path. Overrides the SOURCEPATH environment variable. The
sourcepath element represents a PATH like structure.

Example

<mparse target="c:/metamata/examples/parseexamples/javagrammars/singlefile/JavaParser.jj"
metamatahome="c:/metamata" cleanup="true">

<classpath>
<pathelement location="c:/metamata/examples/"/>

</classpath>
</mparse>

This invokes Metamata MParse installed in c:/metamata on one of the grammar
file example (JavaParser.jj) and cleans up the intermediate Sun JavaCC file.

269 of 389

270 Ant Tasks

5.3.29 Native2Ascii

Description

Converts files from native encodings to ASCII with escaped Unicode. A common
usage is to convert source files maintained in a native operating system encoding,
to ASCII prior to compilation.

Files in the directory src are converted from a native encoding to ASCII.
By default, all files in the directory are converted. However, conversion may
be limited to selected files using includes and excludes attributes. For more
information on file matching patterns, see the section on directory based tasks.
If no encoding is specified, the default encoding for the JVM is used. If ext
is specified, then output files are renamed to use it as a new extension. More
sophisticated file name translations can be achieved using a nested <mapper>
element. By default an identity mapper will be used. If dest and src point to
the same directory, the ext attribute or a nested <mapper> is required.

This task forms an implicit File Set, and supports all attributes of <fileset>
(dir becomes src) as well as nested <include>, <exclude>, and <patternset>
elements.

Attribute Description Required
reverse Reverse the sense of the conversion, i.e. con-

vert from ASCII to native
No

encoding The native encoding the files are in (default is
the default encoding for the JVM)

No

src The directory to find files in (default is
basedir)

No

dest The directory to output file to Yes
ext File extension to use in renaming output files No
defaultexcludes indicates whether default excludes should be

used or not (”yes”/”no”). Default excludes
are used when omitted.

No

includes comma- or space-separated list of patterns of
files that must be included. All files are in-
cluded when omitted.

No

includesfile the name of a file. Each line of this file is taken
to be an include pattern

No

excludes comma- or space-separated list of patterns of
files that must be excluded. No files (except
default excludes) are excluded when omitted.

No

excludesfile the name of a file. Each line of this file is taken
to be an exclude pattern

No

Examples

<native2ascii encoding="EUCJIS" src="srcdir" dest="srcdir"
includes="**/*.eucjis" ext=".java"/>

270 of 389

5.3 Optional Tasks 271

Converts all files in the directory srcdir ending in .eucjis from the EUCJIS
encoding to ASCII and renames them to end in .java.

<native2ascii encoding="EUCJIS" src="native/japanese" dest="src"
includes="**/*.java"/>

Converts all the files ending in .java in the directory native/japanese to ASCII,
placing the results in the directory src. The names of the files remain the same.

5.3.30 NetRexxC

Description

Compiles a NetRexx source tree within the running (Ant) VM.
The source and destination directory will be recursively scanned for NetRexx

source files to compile. Only NetRexx files that have no corresponding class file
or where the class file is older than the java file will be compiled.

Files in the source tree are copied to the destination directory, allowing
support files to be located properly in the classpath. The source files are copied
because the NetRexx compiler cannot produce class files in a specific directory
via parameters

The directory structure of the source tree should follow the package hierar-
chy.

It is possible to refine the set of files that are being compiled/copied. This
can be done with the includes, includesfile, excludes, excludesfile and default-
excludes attributes. With the includes or includesfile attribute you specify the
files you want to have included by using patterns. The exclude or excludesfile
attribute is used to specify the files you want to have excluded. This is also
done with patterns. And finally with the defaultexcludes attribute, you can
specify whether you want to use default exclusions or not. See the section on
directory based tasks, on how the inclusion/exclusion of files works, and how to
write patterns.

This task forms an implicit FileSet and supports all attributes of ¡fileset¿
(dir becomes srcdir) as well as the nested ¡include¿, ¡exclude¿ and ¡patternset¿
elements.

All properties except classpath, srcdir and destDir are also available as prop-
erties in the form ant.netrexxc.attributename, eg.

<property name="ant.netrexxc.verbose" value="noverbose"/>

or from the command line as ant -Dant.netrexxc.verbose=noverbose ...

271 of 389

272 Ant Tasks

Parameters

Attribute Description Required
binary Whether literals are treated as the java binary

type rather than the NetRexx types
No

classpath The classpath to use during compilation No
comments Whether comments are passed through to the

generated java source
No

compact Whether error messages come out in compact
or verbose format. Default is the compact for-
mat.

No

compile Whether the NetRexx compiler should com-
pile the generated java code

No

console Whether or not messages should be displayed
on the ’console’

No

crossref Whether variable cross references are gener-
ated

No

decimal Whether decimal arithmetic should be used
for the NetRexx code

No

defaultexcludes indicates whether default excludes should be
used or not (”yes”/”no”). Default excludes
are used when omitted.

No

destDir the destination directory into which the Ne-
tRexx source files should be copied and then
compiled

Yes

diag Whether diagnostic information about the
compile is generated

No

excludes comma- or space-separated list of patterns of
files that must be excluded. No files (except
default excludes) are excluded when omitted.

No

excludesfile the name of a file. Each line of this file is taken
to be an exclude pattern

No

explicit Whether variables must be declared explicitly
before use

No

format Whether the generated java code is formatted
nicely or left to match NetRexx line numbers
for call stack debugging

No

includes comma- or space-separated list of patterns of
files that must be included. All files are in-
cluded when omitted.

No

includesfile the name of a file. Each line of this file is taken
to be an include pattern

No

java Whether the generated java code is produced No
keep Sets whether the generated java source file

should be kept after compilation. The gener-
ated files will have an extension of .java.keep,
not .java

No

logo Whether the compiler text logo is displayed
when compiling

No

replace Whether the generated .java file should be re-
placed when compiling

No

savelog Whether the compiler messages will be written
to NetRexxC.log as well as to the console

No

272 of 389

5.3 Optional Tasks 273

Attribute Description Required
sourcedir Tells the NetRexx compiler to store the class

files in the same directory as the source files.
The alternative is the working directory

No

srcDir Set the source dir to find the source NetRexx
files

Yes

strictargs Tells the NetRexx compiler that method calls
always need parentheses, even if no arguments
are needed, e.g. aStringVar.getBytes vs. aS-
tringVar.getBytes()

No

strictassign Tells the NetRexx compile that assignments
must match exactly on type

No

strictcase Specifies whether the NetRexx compiler
should be case sensitive or not

No

strictimport Whether classes need to be imported explicitly
using an import statement. By default the Ne-
tRexx compiler will import certain packages
automatically

No

strictprops Whether local properties need to be qualified
explicitly using this

No

strictsignal Whether the compiler should force catching of
exceptions by explicitly named types

No

symbols Whether debug symbols should be generated
into the class file

No

time Asks the NetRexx compiler to print compila-
tion times to the console

No

trace Turns on or off tracing and directs the resul-
tant trace output

No

utf8 Tells the NetRexx compiler that the source is
in UTF8

No

verbose Whether lots of warnings and error messages
should be generated

No

suppressMethodArgumentNotUsed Tells whether we should filter out the
&Method argument not used& messages in
strictargs mode.

no

suppressPrivatePropertyNotUsed Tells whether we should filter out the &Private
Property defined, but not used& messages in
strictargs mode.

no

suppressVariableNotUsed Tells whether we should filter out the &Vari-
able set but not used& messages in strictargs
mode. Please be careful with this one, as you
can hide errors behind it!

no

273 of 389

274 Ant Tasks

Attribute Description Required
suppressExceptionNotSignalled Tells whether we should filter out the &Excep-

tion is declared, but not signalled within the
method& messages in strictsignal mode.

no

suppressDeprecation Tells wether we should filter out any
deprecation-messages of the compiler out.

no

Examples

<netrexxc srcDir="/source/project" includes="vnr/util/*"
destDir="/source/project/build" classpath="/source/project2/proj.jar"
comments="true" crossref="false" replace="true" keep="true"/>

5.3.31 Perforce Tasks

Perforce Tasks User Manual

by

* Les Hughes (leslie.hughes@rubus.com)
* Kirk Wylie (kirk@radik.com)

Version 1.1 - 2001/01/09

These tasks provide an interface to the Perforce SCM.
The org.apache.tools.ant.taskdefs.optional.perforce package consists of a sim-

ple framework to support p4 functionality as well as some Ant tasks encapsu-
lating frequently used (by me :-) p4 commands. However, the addition of new
p4 commands is a pretty simple task (see the source). Although it is possible to
use these commands on the desktop, they were primarily intended to be used
by automated build systems.

Note: These tasks require the oro 2.0.XXX regular expression package. Sim-
ply download this package and copy the jakarta-oro-2.0.XXX.jar file into Ant’s
lib directory. You will also need the Perforce client executable (p4 or p4.exe but
not p4win.exe) in your path.

The Tasks

• P4Sync Synchronise a workspace to a depot

• P4Change Request a new changelist from the Perforce server

• P4Edit Open files for edit (checkout)

• P4Submit Submit a changelist to the Perforce server (checkin)

• P4Have List current files in client view, useful for reporting

• P4Label Create a label reflecting files in the current workspace

274 of 389

5.3 Optional Tasks 275

• P4Counter Obtain or set the value of a counter

• P4Reopen Move files between changelists

• P4Revert Revert files

• P4Add Add files

General P4 Properties

Each p4 task requires a number of settings, either through build-wide properties,
individual attributes or environment variables. These are

Property Attribute Env Var Description Default
p4.port port P4PORT The p4d server and

port to connect to
perforce:1666

p4.client client P4CLIENT The p4 client spec
to use

The logged
in user-
name

p4.user user P4USER The p4 username The logged
in user-
name

– view – The client, branch
or label view to op-
erate upon. See the
p4 user guide for
more info.

//...

Your local installation of Perforce may require other settings (e.g. P4PASSWD,
P4CONFIG). At the moment, these can only be set outside of Ant, as environ-
ment variables.

Additionally, you may also specify the following attributes:
Attribute Description Required
failonerror Specifies whether to stop the build

(true—yes—on) or keep going
(false—no—off) if an error is returned
from the p4 command.

No; defaults to
true.

Examples

Setting in the environment:- (Unix csh)

setenv P4PORT myperforcebox:1666

(Unix sh et al)

P4USER=myp4userid; export P4USER

Using build properties:-

<property name="p4.client" value="nightlybuild"/>

275 of 389

276 Ant Tasks

Using task attributes:-

<p4Whatever
port="myserver:1666"
client="smoketest"
user="smoketestdude"
.
.
.

/>

For more information regarding the underlying ’p4’ commands you are referred
to the Perforce Command Reference available from the Perforce website.

Taskdefs

Standard taskdefs (for you to copy’n’paste) – normally this is done auto-
matically if you install this optional task.

<taskdef name="p4sync" classname="org.apache.tools.ant.taskdefs.optional.perforce.P4Sync"/>
<taskdef name="p4change" classname="org.apache.tools.ant.taskdefs.optional.perforce.P4Change"/>
<taskdef name="p4edit" classname="org.apache.tools.ant.taskdefs.optional.perforce.P4Edit"/>
<taskdef name="p4submit" classname="org.apache.tools.ant.taskdefs.optional.perforce.P4Submit"/>
<taskdef name="p4have" classname="org.apache.tools.ant.taskdefs.optional.perforce.P4Have"/>
<taskdef name="p4label" classname="org.apache.tools.ant.taskdefs.optional.perforce.P4Label"/>
<taskdef name="p4counter" classname="org.apache.tools.ant.taskdefs.optional.perforce.P4Counter"/>
<taskdef name="p4reopen" classname="org.apache.tools.ant.taskdefs.optional.perforce.P4Reopen"/>
<taskdef name="p4revert" classname="org.apache.tools.ant.taskdefs.optional.perforce.P4Revert"/>
<taskdef name="p4add" classname="org.apache.tools.ant.taskdefs.optional.perforce.P4Add"/>

Task Descriptions

P4Sync

Description

Synchronize the current workspace with the depot.
Parameters

Attribute Description Required
force force a refresh of files, if this attribute has been

set.
no - if ommitted, it
will be off, other-
wise a refresh will
be forced.

label sync client to label no
Examples

276 of 389

5.3 Optional Tasks 277

<p4sync label="nightlybuild-0.0123" force="foo"/>
<p4sync view="//depot/projects/projectfoo/main/src/..."/>

P4Change

Description

Request a new changelist from the Perforce server. This task sets the
${p4.change} property which can then be passed to P4Submit, P4Edit, or
P4Add.

Parameters

Attribute Description Required
description Description for ChangeList. If none specified,

it will default to ”AutoSubmit By Ant”
No.

Examples

<p4change description="Change Build Number in Script">

P4Edit

Description:

Open file(s) for edit. P4Change should be used to obtain a new changelist
for P4Edit as, although P4Edit can open files to the default change, P4Submit
cannot yet submit it.

Parameters

Attribute Description Required
view The filespec to request to edit Yes
change An existing changelist number to assign files

to.
No, but see above.

Examples

<p4edit
view="//depot/projects/projectfoo/main/src/Blah.java..."
change="${p4.change}"/>

P4Submit

Description:

Submit a changelist, usually obtained from P4Change.
Parameters

277 of 389

278 Ant Tasks

Attribute Description Required
change The changelist number to submit Yes

Examples

<p4submit change="${p4.change}"/>

P4Have

Description:

List handy file info reflecting the current client contents.
Parameters

Attribute Description Required
None – –

Examples

<p4have/>

P4Label

Description:

Create a new label and set contents to reflect current client file revisions.
Parameters Attribute Description Required name The name of the label Yes

view client view to use for label No desc Label Description No lock Lock the
label once created. No Examples

<p4label
name="NightlyBuild:${DSTAMP}:${TSTAMP}"
desc="Auto Nightly Build"
lock="locked"

/>

P4Counter

Description:
Obtain or set the value of a counter. When used in its base form (where

only the counter name is provided), the counter value will be printed to the
output stream. When the value is provided, the counter will be set to the value
provided. When a property name is provided, the property will be filled with
the value of the counter. You may not specify to both get and set the value of
the counter in the same Task.

The user performing this task must have Perforce ”review” permissions as
defined by Perforce protections in order for this task to succeed.

278 of 389

5.3 Optional Tasks 279

Parameters Attribute Description Required name The name of the counter
Yes value The new value for the counter No property The property to be set
with the value of the counter No

Examples
Print the value of the counter named ”last-clean-build” to the output stream:

<p4counter name="last-clean-build"/>

Set the value of the counter based on the value of the ”TSTAMP” property:

<p4counter name="last-clean-build" value="${TSTAMP}"/>

Set the value of the ”p4.last.clean.build” property to the current value of the
”last-clean-build” counter:

<p4counter name="last-clean-build" property="${p4.last.clean.build}"/>

P4Reopen Description:
Move (or reopen in Perforce speak) checkout files between changelists. Pa-

rameters Attribute Description Required tochange The changelist to move files
to. Yes

Examples
Move all open files to the default changelist

<p4reopen view="//..." tochange="default"/>

Create a new changelist then reopen into it, any files from the view //projects/foo/main/...

<p4change description="Move files out of the way"/>
<p4reopen view="//projects/foo/main/..." tochange="${p4.change}"/>

P4Revert Description:
Reverts files. Parameters Attribute Description Required change The change-

list to revert. No revertOnlyUnchanged Revert only unchanged files (p4 revert
-a) No Examples Revert everything!

<p4revert view="//..."/>

Revert any unchanged files in the default change

<p4revert change="default" revertonlyunchanged="true"/>

P4Add Description:
Adds files specified in nested fileset children. Parameters Attribute De-

scription Required commandlength A positive integer specifying the maximum
length of the commandline when calling Perforce to add the files. Defaults to
450, higher values mean faster execution, but also possible failures. No change-
list If specified the open files are associated with the specified pending changelist
number; otherwise the open files are associated with the default changelist. No
Examples Require a changelist, add all java files starting from a directory, and
submit

279 of 389

280 Ant Tasks

<p4change/>
<p4add commandlength="20000" changelist="${p4.change}">

<fileset dir="../dir/src/" includes="**/*.java"/>
<p4add>
<p4submit change="${p4.change}"/>

Change History Sept 2000 – Internal Release within Rubus Nov 2000 V1.0 Initial
Release donated to ASF :-) Jan 2001 V1.1 fixed cross platform (NT/Unix) bug
refactored p4 output handling code refactored exec’ing code

5.3.32 PropertyFile

PropertyFile
by
* Thomas Christen (chr@active.ch) * Jeremy Mawson (jem@loftinspace.com/au)
Table of Contents
* Introduction * PropertyFile Task * Entry Task
Introduction
Ant provides an optional task for editing property files. This is very use-

ful when wanting to make unattended modifications to configuration files for
application servers and applications. Currently, the task maintains a working
property file with the ability to add properties or make changes to existing ones.
However, any comments are lost.

PropertyFile Task Parameters Attribute Description Required file Location
of the property file to be edited Yes comment Header for the file itself no Pa-
rameters specified as nested elements Entry

Use nested ¡entry¿ elements to specify actual modifications to the property
file itself. Attribute Description Required key Name of the property name/value
pair Yes value Value to set (=), to add (+) or subtract (-) At least one must be
specified default Initial value to set for a property if it is not already defined in
the property file. For type date, an additional keyword is allowed: ”now” type
Regard the value as : int, date or string (default) No operation ”+” or ”=”
(default) for all datatypes ”-” (for date and int only). No pattern For int and
date type only. If present, Values will be parsed and formatted accordingly. No
unit The unit of the value to be applied to date +/- operations. Valid Values
are:

* millisecond * second * minute * hour * day (default) * week * month *
year

This only applies to date types using a +/- operation. No
The rules used when setting a property value are shown below. The operation

occurs after these rules are considered.
* If only value is specified, the property is set to it regardless of its previous

value. * If only default is specified and the property previously existed in the
property file, it is unchanged. * If only default is specified and the property
did not exist in the property file, the property is set to default. * If value and
default are both specified and the property previously existed in the property

280 of 389

5.3 Optional Tasks 281

file, the property is set to value. * If value and default are both specified and
the property did not exist in the property file, the property is set to default.

Examples
The following changes the my.properties file. Assume my.properties look

like:

A comment
akey=novalue

After running, the file would now look like

#Thu Nov 02 23:41:47 EST 2000
akey=avalue
adate=2000/11/02 23\:41
anint=1
formated.int=0014
formated.date=028 17\:34

The slashes conform to the expectations of the Properties class. The file will be
stored in a manner so that each character is examined and escaped if necessary.
Note that the original comment is now lost. Please keep this in mind when
running this task against heavily commented properties files. It may be best to
have a commented version in the source tree, copy it to a deployment area, and
then run the modifications on the copy. Future versions of PropertyFile will
hopefully eliminate this shortcoming.

<propertyfile
file="my.properties"
comment"My properties">

<entry key="akey" value="avalue"/>
<entry key="adate" type="date" value="now"/>
<entry key="anint" type="int" operation="+"/>
<entry key="formated.int" type="int" default="0013" operation="+" pattern="0000"/>
<entry key="formated.date" type="date" value="now" pattern="DDD HH:mm"/>

</propertyfile>

To produce dates relative from today :

<propertyfile
file="my.properties"
comment="My properties">

<entry key="formated.date-1"
type="date" default="now" pattern="DDD"
operation="-" value="1"/>

<entry key="formated.tomorrow"
type="date" default="now" pattern="DDD"
operation="+" value="1"/>

</propertyfile>

281 of 389

282 Ant Tasks

Concatenation of strings :

<propertyfile
file="my.properties"
comment="My properties">

<entry key="progress" default="" operation="+" value="."/>
</propertyfile>

Each time called, a ”.” will be appended to ”progress”

5.3.33 Pvcs

Note: Before using this task, the user running ant must have access to the
commands of PVCS (get and pcli) and must have access to the repository. Note
that the way to specify the repository is platform dependent so use property to
specify location of repository. by

* Thomas Christensen (tchristensen@nordija.com) * Don Jeffery (donj@apogeenet.com)
Version 1.1 - 2001/06/27
Problems with UNC pathnames and the use of () in paths are fixed and an

updateonly argument introduced. Version 1.0 - 2001/01/31
Initial release. Table of Contents
* Introduction * Pvcs Task
Introduction The pvcs task allows the user of ant to extract the latest edition

of the source code from a PVCS repository. PVCS is a version control system
developed by Merant. This version has been tested agains PVCS version 6.5 and
6.6 under Windows and Solaris. Pvcs Task Description The pvcs task is set to
point at a PVCS repository and optionally a project within that repository, and
can from that specification get the latest version of the files contained by the
repository. Parameters Attribute Description Required repository The location
of the repository (see your PVCS manuals) Yes pvcsproject The project within
the PVCS repository to extract files from (”/” is root project and that is default
if this attribute isn’t specified) No label Only files marked with this label are
extracted. No promotiongroup Only files within this promotion group are ex-
tracted. Using both the label and the promotiongroup tag will cause the files in
the promotion group and with that label to be extracted. No force If set to yes
all files that exists and are writable are overwritten. Default no causes the files
that are writable to be ignored. This stops the PVCS command get to stop ask-
ing questions! No workspace By specifying a workspace, the files are extracted
to that location. A PVCS workspace is a name for a location of the workfiles
and isn’t as such the location itself. You define the location for a workspace
using the PVCS GUI clients. If this isn’t specified the default workspace for the
current user is used. No pvcsbin On some systems the PVCS executables pcli
and get are not found in the PATH. In such cases this attribute should be set
to the bin directory of the PVCS installation containing the executables men-
tioned before. If this attribute isn’t specified the tag expects the executables
to be found using the PATH environment variable. No ignorereturncode If set
to true the return value from executing the pvcs commands are ignored. No

282 of 389

5.3 Optional Tasks 283

updateonly If set to true files are gotten only if newer than existing local files.
No filenameformat The format of your folder names in a format suitable for
java.text.MessageFormat. Defaults to 0-arc(1). Repositories where the archive
extension is not -arc should set this. No linestart Used to parse the output of
the pcli command. It defaults to ”P:. The parser already knows about / and
, this property is useful in cases where the repository is accessed on a Windows
platform via a drive letter mapping. No Nested Elements pvcsproject element

pvcs supports a nested ¡pvcsproject¿ element, that represents a project within
the PVCS repository to extract files from. By nesting multiple ¡pvcsproject¿
elements under the ¡pvcs¿ task, multiple projects can be specified. Parameters
Attribute Description Required name The name of the pvcs project Yes Ex-
amples The following set-up extracts the latest version of the files in the pvcs
repository.

<!-- === -->
<!-- Get the latest version -->
<!-- === -->
<target name="getlatest">

<pvcs repository="/mnt/pvcs" pvcsproject="/myprj"/>
</target>

Now run: ant getlatest
This will cause the following output to appear:

getlatest:
[pvcs] PVCS Version Manager (VMGUI) v6.6.10 (Build 870) for Windows NT/80x86
[pvcs] Copyright 1985-2000 MERANT. All rights reserved.
[pvcs] PVCS Version Manager (get) v6.6.10 (Build 870) for Windows NT/80x86
[pvcs] Copyright 1985-2000 MERANT. All rights reserved.
[pvcs] c:\myws\myprj\main.java <- C:\mypvcs\archives\myprj\main.java-arc
[pvcs] rev 1.1
[pvcs] c:\myws\myprj\apache\tool.java <- C:\mypvcs\archives\myprj\apache\tools.java-arc
[pvcs] rev 1.5

BUILD SUCCESSFUL

Total time: 19 seconds

This next example extracts the latest version of the files in the pvcs repository
from two projects using nested ¡pvcsproject¿ elements.

<!-- ===-->
<!-- Get latest from myprj and myprj2 -->
<!-- ===-->
<target name="getlatest2">

<pvcs repository="/mnt/pvcs">
<pvcsproject name="/myprj"/>
<pvcsproject name="/myprj2"/>

283 of 389

284 Ant Tasks

</pvcs>
</target>

Now run: ant getlatest2
This will cause the following output to appear:

getlatest2:
[pvcs] PVCS Version Manager (VMGUI) v6.6.10 (Build 870) for Windows NT/80x86
[pvcs] Copyright 1985-2000 MERANT. All rights reserved.
[pvcs] PVCS Version Manager (get) v6.6.10 (Build 870) for Windows NT/80x86
[pvcs] Copyright 1985-2000 MERANT. All rights reserved.
[pvcs] c:\myws\myprj\main.java <- C:\mypvcs\archives\myprj\main.java-arc
[pvcs] rev 1.1
[pvcs] c:\myws\myprj\apache\tool.java <- C:\mypvcs\archives\myprj\apache\tool.java-arc
[pvcs] rev 1.5
[pvcs] c:\myws\myprj2\apache\tool2.java <- C:\mypvcs\archives\myprj2\apache\tool2.java-arc
[pvcs] rev 1.2

BUILD SUCCESSFUL

Total time: 22 seconds

5.3.34 RenameExtensions

Deprecated
This task has been deprecated. Use the move task with a glob mapper

instead. Description
Renames files in the srcDir directory ending with the fromExtension string

so that they end with the toExtension string. Files are only replaced if replace
is true

See the section on directory based tasks, on how the inclusion/exclusion of
files works, and how to write patterns. This task forms an implicit FileSet and
supports all attributes of ¡fileset¿ (dir becomes srcDir) as well as the nested ¡in-
clude¿, ¡exclude¿ and ¡patternset¿ elements. Parameters Attribute Description
Required defaultexcludes indicates whether default excludes should be used or
not (”yes”/”no”). Default excludes are used when omitted. No excludes comma-
or space-separated list of patterns of files that must be excluded. No files (ex-
cept default excludes) are excluded when omitted. No excludesfile the name of
a file. Each line of this file is taken to be an exclude pattern No fromExtention
The string that files must end in to be renamed Yes includes comma- or space-
separated list of patterns of files that must be included. All files are included
when omitted. No includesfile the name of a file. Each line of this file is taken to
be an include pattern No replace Whether the file being renamed to should be
replaced if it already exists No srcDir The starting directory for files to search
in Yes toExtension The string that renamed files will end with on completion
Yes

Examples

284 of 389

5.3 Optional Tasks 285

<renameext srcDir="/source/project1" includes="**" excludes="**/samples/*" fromExtension=".java.keep" toExtension=".java" replace="true"/>

5.3.35 ReplaceRegExp

Description
ReplaceRegExp is a directory based task for replacing the occurrence of a

given regular expression with a substitution pattern in a selected file or set of
files.

Similar to regexp type mappers this task needs a supporting regular expres-
sion library and an implementation of org.apache.tools.ant.util.regexp.Regexp.
Ant comes with implementations for the java.util.regex package of JDK 1.4,
jakarta-regexp and jakarta-ORO, but you will still need the library itself.

There are cross-platform issues for matches related to line terminator. For
example if you use $ to anchor your regular expression on the end of a line
the results might be very different depending on both your platform and the
regular expression library you use. It is ’highly recommended’ that you test
your pattern on both Unix and Windows platforms before you rely on it.

• Jakarta Oro defines a line terminator as ’
n’ and is consistent with Perl.

• Jakarta RegExp uses a system-dependant line terminator.

• JDK 1.4 uses ’
n’, ’
r
n’, ’
u0085’, ’
u2028’, ’
u2029’ as a default but is configured in the wrapper to use only ’
n’ (UNIX LINE)

We strongly recommend that you use Jakarta Oro. Parameters Attribute De-
scription Required file file for which the regular expression should be replaced.
Yes if no nested ¡fileset¿ is used match The regular expression pattern to match
in the file(s) Yes, if no nested ¡regexp¿ is used replace The substitution pattern
to place in the file(s) in place of the regular expression. Yes, if no nested ¡sub-
stitution¿ is used flags The flags to use when matching the regular expression.
For more information, consult the Perl5 syntax g : Global replacement. Replace
all occurences found i : Case Insensitive. Do not consider case in the match m
: Multiline. Treat the string as multiple lines of input, using ”caret” and ”$”
as the start or end of any line, respectively, rather than start or end of string.
s : Singleline. Treat the string as a single line of input, using ”.” to match any
character, including a newline, which normally, it would not match. No byline
Process the file(s) one line at a time, executing the replacement on one line at a
time (true/false). This is useful if you want to only replace the first occurence
of a regular expression on each line, which is not easy to do when processing
the file as a whole. Defaults to false. No

285 of 389

286 Ant Tasks

Examples

<replaceregexp file="${src}/build.properties"
match="OldProperty=(.*)"
replace="NewProperty=\1"
byline="true"/>

replaces occurrences of the property name ”OldProperty” with ”NewProp-
erty” in a properties file, preserving the existing value, in the file ${src}/build.properties

Parameters specified as nested elements
This task supports a nested FileSet element.
This task supports a nested Regexp element to specify the regular expression.

You can use this element to refer to a previously defined regular expression
datatype instance.

<regexp id="id" pattern="expression"/>
<regexp refid="id"/>

This task supports a nested Substitution element to specify the substitution
pattern. You can use this element to refer to a previously defined substitution
pattern datatype instance.

<substitution id="id" pattern="expression"/>
<substitution refid="id"/>

Examples

<replaceregexp byline="true">
<regexp pattern="OldProperty=(.*)"/>
<substitution expression="NewProperty=\1"/>
<fileset dir=".">
<includes="*.properties"/>

</fileset>
</replaceregexp>

replaces occurrences of the property name ”OldProperty” with ”NewProperty”
in a properties file, preserving the existing value, in all files ending in .properties
in the current directory

<replaceregexp match="\s+" replace=" " flags="g" byline="true">
<fileset dir="${html.dir}" includes="**/*.html" />

</replaceregexp>

replaces all whitespaces (blanks, tabs, etc) by one blank remaining the line
separator. So with input

<html> <body>
<<TAB>><h1> T E S T </h1> <<TAB>>
<<TAB>> </body></html>

would converted to

<html> <body>
<h1> T E S T </h1> </body></html>

286 of 389

5.3 Optional Tasks 287

5.3.36 Rpm

Description
A basic task for invoking the rpm executable to build a Linux installation

file. The task currently only works on Linux or other Unix platforms with rpm
support.

Parameters
Attribute Description Required
specFile The name of the spec File to be used. Yes topDir this is the direc-

tory which will have the expected subdirectories, SPECS, SOURCES, BUILD,
SRPMS. If this isn’t specified, the baseDir value is used No cleanBuildDir This
will remove the generated files in the BUILD directory. No removeSpec this
will remove the spec file from SPECS No removeSource Flag (optional, de-
fault=false) to remove the sources after the build. See the the –rmsource option
of rpmbuild. No command very similar idea to the cvs task. the default is ”-bb”
No output/error where standard output and error go No

5.3.37 ServerDeploy

ANT ServerDeploy User Manual
by
* Christopher A. Longo (cal@cloud9.net) * Cyrille Morvan (cmorvan@ingenosya.com)
At present the tasks support:
* Weblogic servers * JOnAS 2.4 Open Source EJB server
Over time we expect further optional tasks to support additional J2EE

Servers.
Task Application Servers serverdeploy Nested Elements generic Generic task

jonas JOnAS 2.4 weblogic Weblogic ServerDeploy element Description:
The serverdeploy task is used to run a ”hot” deployment tool for vendor-

specific J2EE server. The task requires nested elements which define the at-
tributes of the vendor-specific deployment tool being executed. Vendor-specific
deployment tools elements may enforce rules for which attributes are required,
depending on the tool.

Parameters:
Attribute Description Required
action This is the action to be performed. For most cases this will be ”de-

ploy”. Some tools support additional actions, such as ”delete”, ”list”, ”unde-
ploy”, ”update”... Yes source A fully qualified path/filename of the component
to be deployed. This may be an .ear, .jar, .war, or any other type that is
supported by the server. Tool dependant Nested Elements

The serverdeploy task supports a nested classpath element to set the class-
path. Vendor-specific nested elements

Parameters used for all tools:
Attribute Description Required classpath The classpath to be passed to the

JVM running the tool. The classpath may also be supplied as a nested element.
Tool dependant server The address or URL for the server where the component

287 of 389

288 Ant Tasks

will be deployed. Tool dependant username The user with privileges to deploy
applications to the server. Tool dependant password The password of the user
with privileges to deploy applications to the server. Tool dependant

Also supported are nested vendor-specific elements. Generic element
This element is provided for generic Java-based deployment tools. The

generic task accepts (but does not require) nested arg and jvmarg elements.
A JVM will be spawned with the provided attributes. It is recommended that
a vendor-specific element be used over the generic one if at all possible.

The following attributes are supported by the generic element.
Attribute Description Required
classname This is the fully qualified classname of the Java based deployment

tool to execute. Yes
Nested Elements
The generic element supports nested ¡arg¿ and ¡jvmarg¿ elements.
Example
This example shows the use of generic deploy element to deploy a component

using a Java based deploy tool:

<serverdeploy action="deploy" source="${lib.dir}/ejb_myApp.ear">
<generic classname="com.yamato.j2ee.tools.deploy.DeployTool"

classpath="${classpath}"
username="${user.name}"
password="${user.password}">
<arg value="-component=WildStar"/>
<arg value="-force"/>
<jvmarg value="-ms64m"/>
<jvmarg value="-mx128m"/>

</generic>
</serverdeploy>

WebLogic element
The WebLogic element contains additional attributes to run the weblogic.deploy

deployment tool.
Valid actions for the tool are deploy, undeploy, list, update, and delete.
If the action is deploy or update, the application and source attributes must

be set. If the action is undeploy or delete, the application attribute must be
set. If the username attribute is omitted, it defaults to ”system”. The password
attribute is required for all actions.

Attribute Description Required application This is the name of the applica-
tion being deployed Yes component This is the component string for deployment
targets. It is in the form ¡component¿:¡target1¿,¡target2¿... Where component is
the archive name (minus the .jar, .ear, .war extension). Targets are the servers
where the components will be deployed no debug If set to true, additional in-
formation will be printed during the deployment process. No

Examples
This example shows the use of serverdeploy to deploy a component to a

WebLogic server:

288 of 389

5.3 Optional Tasks 289

<serverdeploy action="deploy" source="${lib.dir}/ejb_myApp.ear">
<weblogic application="myapp"

server="t3://myserver:7001"
classpath="${weblogic.home}/lib/weblogic.jar"
username="${user.name}"
password="${user.password}"
component="ejb_foobar:myserver,productionserver"
debug="true"/>

</serverdeploy>

This example shows serverdeploy being used to delete a component from a
WebLogic server:

<serverdeploy action="delete" source="${lib.dir}/ejb_myApp.jar"/>
<weblogic application="myapp"

server="t3://myserver:7001"
classpath="${weblogic.home}/lib/weblogic.jar"
username="${user.name}"
password="${user.password}"/>

</serverdeploy>

JOnAS (Java Open Applicaton Server) element
The JOnAS element contains additional attributes to run the JonasAdmin

deployment tool.
Valid actions for the tool are deploy, undeploy, list and update.
You can’t use user and password property with this task.
Attribute Description Required
jonasroot The root directory for JOnAS. Yes orb Choose your ORB : RMI,

JEREMIE, DAVID, ... If omitted, it defaults to the one present in classpath.
The corresponding JOnAS JAR is automatically added to the classpath. If your
orb is DAVID (RMI/IIOP) you must specify davidhost and davidport proper-
ties. No davidhost The value for the system property : david.CosNaming.default host
. No davidport The value for the system property : david.CosNaming.default port
. No classname This is the fully qualified classname of the Java based de-
ployment tool to execute. Default to org.objectweb.jonas.adm.JonasAdmin No
Nested Elements

The jonas element supports nested ¡arg¿ and ¡jvmarg¿ elements.

Examples

This example shows the use of serverdeploy to deploy a component to a JOnAS
server:

<serverdeploy action="deploy" source="${lib.dir}/ejb_myApp.jar">
<jonas server="MyJOnAS" jonasroot="${jonas.root}">

<classpath>
<pathelement path="${jonas.root}/lib/RMI_jonas.jar"/>

289 of 389

290 Ant Tasks

<pathelement path="${jonas.root}/config/"/>
</classpath>

</jonas>
</serverdeploy>

This example shows serverdeploy being used to list the components from a
JOnAS server and a WebLogic server:

<serverdeploy action="list"/>
<jonas jonasroot="${jonas.root}" orb="JEREMIE"/>
<weblogic application="myapp"

server="t3://myserver:7001"
classpath="${weblogic.home}/lib/weblogic.jar"
username="${user.name}"
password="${user.password}"/>

</serverdeploy>

5.3.38 Setproxy

Setproxy Task
Sets Java’s web proxy properties, so that tasks and code run in the same

JVM can have through-the-firewall access to remote web sites, and remote ftp
sites. Apache Ant

Description
Sets Java’s web proxy properties, so that tasks and code run in the same

JVM can have through-the-firewall access to remote web sites, and remote ftp
sites. You can nominate an http and ftp proxy, or a socks server, reset the server
settings, or do nothing at all.

Examples
¡setproxy/¿
do nothing
¡setproxy proxyhost=”firewall”/¿
set the proxy to firewall:80
¡setproxy proxyhost=”firewall” proxyport=”81”/¿
set the proxy to firewall:81
¡setproxy proxyhost=””/¿
stop using the http proxy; don’t change the socks settings
¡setproxy socksproxyhost=”socksy”/¿
use socks via socksy:1080
¡setproxy socksproxyhost=””/¿
stop using the socks server
Parameters
Attribute Description Type nonProxyHosts A list of hosts to bypass the

proxy on. These should be separated with the vertical bar character ’—’. Only
in Java 1.4 does ftp use this list. e.g. fozbot.corp.sun.com—*.eng.sun.com.
String proxyHost the HTTP/ftp proxy host. Set this to ”” for the http proxy

290 of 389

5.3 Optional Tasks 291

option to be disabled String proxyPort the HTTP/ftp proxy port number; de-
fault is 80 int socksProxyHost The name of a Socks server. Set to ”” to turn
socks proxying off. String socksProxyPort Set the ProxyPort for socks connec-
tions. The default value is 1080 int

Parameters as nested elements

5.3.39 Script

Description
Execute a script in a BSF supported language.
Note: This task depends on external libraries not included in the Ant dis-

tribution. See Library Dependencies for more information.
All items (tasks, targets, etc) of the running project are accessible from

the script, using either their name or id attributes (as long as their names are
considered valid Java identifiers, that is). The name ”project” is a pre-defined
reference to the Project, which can be used instead of the project name.

BeanShell users: This task now natively supports the BeanShell scripting
language, using language=”beanshell”. The BeanShell engine is still required.

Scripts can do almost anything a task written in Java could do. Parameters
Attribute Description Required language The programming language the script
is written in. Must be a supported BSF language Yes src The location of the
script as a file, if not inline No Examples

¡project name=”squares” default=”main” basedir=”.”¿
¡target name=”setup”¿
¡script language=”javascript”¿ ¡![CDATA[
for (i=1; i¡=10; i++) echo = squares.createTask(”echo”); main.addTask(echo);

echo.setMessage(i*i);
]]¿ ¡/script¿
¡/target¿
¡target name=”main” depends=”setup”/¿
¡/project¿
generates
setup:
main: 1 4 9 16 25 36 49 64 81 100
BUILD SUCCESSFUL
Another example, using references by id and two different scripting lan-

guages:
¡project name=”testscript” default=”main”¿ ¡target name=”sub”¿ ¡echo id=”theEcho”/¿

¡/target¿
¡target name=”sub1”¿ ¡script language=”netrexx”¿¡![CDATA[theEcho.setMessage(”In

sub1”) sub.execute]]¿¡/script¿ ¡/target¿
¡target name=”sub2”¿ ¡script language=”javascript”¿¡![CDATA[theEcho.setMessage(”In

sub2”); sub.execute();]]¿¡/script¿ ¡/target¿
¡target name=”main” depends=”sub1,sub2”/¿ ¡/project¿
generates
sub1: In sub1

291 of 389

292 Ant Tasks

sub2: In sub2
main:
BUILD SUCCESSFUL

5.3.40 Sound

Description
Plays a sound-file at the end of the build, according to whether the build

failed or succeeded. You can specify either a specific sound-file to play, or, if a
directory is specified, the ¡sound¿ task will randomly select a file to play. Note:
At this point, the random selection is based on all the files in the directory, not
just those ending in appropriate suffixes for sound-files, so be sure you only have
sound-files in the directory you specify.

Unless you are running on Java 1.3 or later, you need the Java Media Frame-
work on the classpath (javax.sound). Nested Elements success

Specifies the sound to be played if the build succeeded. fail
Specifies the sound to be played if the build failed. Nested Element Param-

eters
The following attributes may be used on the ¡success¿ and ¡fail¿ elements:

Attribute Description Required source the path to a sound-file directory, or
the name of a specific sound-file, to be played. Yes loops the number of extra
times to play the sound-file; default is 0. No duration the amount of time (in
milliseconds) to play the sound-file. No Examples

¡target name=”fun” if=”fun” unless=”fun.done”¿ ¡sound¿ ¡success source=”user.home/sounds/bell.wav”/ ><
failsource = ”user.home/sounds/ohno.wav” loops=”2”/¿ ¡/sound¿ ¡property
name=”fun.done” value=”true”/¿ ¡/target¿

plays the bell.wav sound-file if the build succeeded, or the ohno.wav sound-
file if the build failed, three times, if the fun property is set to true. If the target
is a dependency of an ”initialization” target that other targets depend on, the
fun.done property prevents the target from being executed more than once.

¡target name=”fun” if=”fun” unless=”fun.done”¿ ¡sound¿ ¡success source=”//intranet/sounds/success”/¿
¡fail source=”//intranet/sounds/failure”/¿ ¡/sound¿ ¡property name=”fun.done”
value=”true”/¿ ¡/target¿

randomly selects a sound-file to play when the build succeeds or fails.

5.3.41 SourceOffSite

by
* Jesse Stockall
Version 1.1 2002/01/23
Contents
* Introduction * The Tasks
Introduction
These tasks provide an interface to the Microsoft Visual SourceSafe SCM

via SourceGear’s SourceOffSite product. SourceOffSite is an add-on to Mi-
crosoft’s VSS, that allows remote development teams and tele-commuters that

292 of 389

5.3 Optional Tasks 293

need fast and secure read/write access to a centralized SourceSafe database via
any TCP/IP connection. SOS provides Linux ,Solaris & Windows clients. The
org.apache.tools.ant.taskdefs.optional.sos package consists of a simple frame-
work to support SOS functionality as well as some Ant tasks encapsulating
frequently used SOS commands. Although it is possible to use these commands
on the desktop, they were primarily intended to be used by automated build
systems. These tasks have been tested with SourceOffSite version 3.5.1 connect-
ing to VisualSourceSafe 6.0. The tasks have been tested with Linux, Solaris &
Windows2000.

The Tasks sosget Retrieves a read-only copy of the specified project or file.
soslabel Assigns a label to the specified project. soscheckin Updates VSS with
changes made to a checked out file or project, and unlocks the VSS master copy.
soscheckout Retrieves a read-write copy of the specified project or file, locking
the VSS master copy

Task Descriptions SOSGet Description Task to perform GET commands
with SOS Parameters Attribute Values Required soscmd Directory which con-
tains soscmd(.exe) soscmd(.exe) must be in the path if this is not specified No
vssserverpath path to the srcsafe.ini - eg.

server
vss
srcsafe.ini Yes sosserverpath address & port of the SOS server - eg. 192.168.0.1:8888
Yes projectpath SourceSafe project path without the ”$” Yes file Filename to
act upon If no file is specified then act upon the project No username Source-
Safe username Yes password SourceSafe password No localpath Override the
working directory and get to the specified path No soshome The path to the
SourceOffSite home directory No nocompress true or false - disable compression
No recursive true or false - Only works with the GetProject command No ver-
sion a version number to get - Only works with the GetFile command No label
a label version to get - Only works with the GetProject command No nocache
true or false - Only needed if SOSHOME is set as an environment variable No
verbose true or false - Status messages are displayed No

Example

<sosget verbose="true"
recursive="true"
username="build"
password="build"
localpath="tmp"
projectpath="/SourceRoot/project1"
sosserverpath="192.168.10.6:8888"
vssserverpath="d:\vss\srcsafe.ini"/>

Connects to a SourceOffsite server on 192.168.10.6:8888 with build,build as the
username & password. The SourceSafe database resides on the same box as the
SOS server & the VSS database is at ”d:
vss

293 of 389

294 Ant Tasks

srcsafe.ini” Does a recursive GetProject on $/SourceRoot/project1, using tmp
as the working directory.

SOSLabel Description
Task to perform Label commands with SOS Parameters Attribute Values

Required soscmd Directory which contains soscmd(.exe) soscmd(.exe) must be
in the path if this is not specified No vssserverpath path to the srcsafe.ini - eg.

server
vss
srcsafe.ini Yes sosserverpath address and port of the SOS server - eg. 192.168.0.1:8888
Yes projectpath SourceSafe project path without the ”$” Yes username Source-
Safe username Yes password SourceSafe password No label The label to apply
to a project Yes comment A comment to be applied to all files being labeled No
verbose true or false - Status messages are displayed No Example

<soslabel username="build"
password="build"
label="test label"
projectpath="/SourceRoot/project1
sosserverpath="192.168.10.6:8888"
vssserverpath="d:\vss\srcsafe.ini"/>

Connects to a SourceOffsite server on 192.168.10.6:8888 with build,build as the
username & password. The SourceSafe database resides on the same box as the
SOS server & the VSS database is at ”d:
vss
srcsafe.ini”. Labels the $/SourceRoot/project1 project with ”test label”.

SOSCheckIn Description
Task to perform CheckIn commands with SOS
Parameters
Attribute Values Required soscmd Directory which contains soscmd(.exe)

soscmd(.exe) must be in the path if this is not specified No vssserverpath path
to the srcsafe.ini - eg.

server
vss
srcsafe.ini Yes sosserverpath address and port of the SOS server - eg. 192.168.0.1:8888
Yes projectpath SourceSafe project path without the ”$” Yes file Filename to
act upon If no file is specified then act upon the project No username Source-
Safe username Yes password SourceSafe password No localpath Override the
working directory and get to the specified path No soshome The path to the
SourceOffSite home directory No nocompress true or false - disable compression
No recursive true or false - Only works with the CheckOutProject command
No nocache true or false - Only needed if SOSHOME is set as an environment
variable No verbose true or false - Status messages are displayed No comment
A comment to be applied to all files being checked in No

Example

294 of 389

5.3 Optional Tasks 295

<soscheckin username="build"
password="build"
file="foobar.txt"
verbose="true"
comment="comment abc"
projectpath="/SourceRoot/project1"
sosserverpath="server1:8888"
vssserverpath="\\server2\vss\srcsafe.ini"/>

Connects to a SourceOffsite server on server1:8888 with build,build as the user-
name & password. The SourceSafe database resides on a different box (server2)
& the VSS database is on a share called ”vss”. Checks-in only the ”foobar.txt”
file adding a comment of ”comment abc”. Extra status messages will be dis-
played on screen.

SOSCheckOut Description Task to perform CheckOut commands with SOS
Parameters Attribute Values Required soscmd Directory which contains soscmd(.exe)
soscmd(.exe) must be in the path if this is not specified No vssserverpath path
to the srcsafe.ini - eg.

server
vss
srcsafe.ini Yes sosserverpath address and port of the SOS server - eg. 192.168.0.1:8888
Yes projectpath SourceSafe project path without the ”$” Yes file Filename to
act upon If no file is specified then act upon the project No username Source-
Safe username Yes password SourceSafe password No localpath Override the
working directory and get to the specified path No soshome The path to the
SourceOffSite home directory No nocompress true or false - disable compression
No recursive true or false - Only works with the CheckOutProject command
No nocache true or false - Only needed if SOSHOME is set as an environment
variable No verbose true or false - Status messages are displayed No

Example

<soscheckout soscmd="/usr/local/bin"
verbose="true"
username="build"
password="build"
projectpath="/SourceRoot/project1"
sosserverpath="192.168.10.6:8888"
vssserverpath="\\server2\vss\srcsafe.ini"/>

Connects to a SourceOffsite server on server1:8888 with build,build as the user-
name & password. The SourceSafe database resides on a different box (server2)
& the VSS database is on a share called ”vss”. Checks-out ”project1”, Only the
”project1” directory will be locked as the recursive option was not set. Extra
status messages will be displayed on screen. The soscmd(.exe) file to be used
resides in /usr/local/bin.

295 of 389

296 Ant Tasks

5.3.42 Splash

by Les Hughes (leslie.hughes@rubus.com) Description
This task creates a splash screen. The splash screen is displayed for the

duration of the build and includes a handy progress bar as well. Use in con-
junction with the sound task to provide interest whilst waiting for your builds
to complete... Parameters Attribute Description Required Default imageurl A
URL pointing to an image to display. No antlogo.gif from the classpath show-
duration Initial period to pause the build to show the splash in milliseconds. No
5000 ms Deprecated properties The following properties can be used to config-
ure the proxy settings to retrieve an image from behind a firewall. However, the
settings apply not just to this task, but to all following tasks. Therefore they
are now mostly deprecated in preference to the ¡setproxy¿ task, that makes it
clear to readers of the build exactly what is going on. We say mostly as this
task’s support includes proxy authentication, so you may still need to use its
proxy attributes. useproxy Use a proxy to access imgurl. Note: Only tested on
JDK 1.2.2 and above No None proxy IP or hostname of the proxy server No
None port Proxy portnumber No None user User to authenticate to the proxy
as. No None password Proxy password No None

Examples

<splash/>

Splash images/ant logo large.gif from the classpath.

<splash imageurl="http://jakarta.apache.org/images/jakarta-logo.gif"
useproxy="true"
showduration="5000"/>

Splashes the jakarta logo, for an initial period of 5 seconds.

5.3.43 Starteam Tasks

* STCheckout * STCheckin * STLabel * STList * StarTeam (deprecated)
These tasks make use of functions from the StarTeam API. As a result they

are only available to licensed users of StarTeam. You must have starteam-sdk.jar
in your classpath to run these tasks. For more information about the StarTeam
API and how to license it, see the StarBase web site. Common Parameters for
All Starteam Tasks

The following parameters, having to do with making the connection to a
StarTeam project, are common to all the following tasks except the deprecated
StarTeam task. Attribute Description Required username The username of the
account used to log in to the StarTeam server. yes password The password of
the account used to log in to the StarTeam server. yes URL A string of the
form servername:portnum/project/view which enables user to set all of these
elements in one string. Either this ... servername The name of the StarTeam
server. ... or all four of these must be defined. serverport The port number of
the StarTeam server. projectname The name of the StarTeam project on which

296 of 389

5.3 Optional Tasks 297

to operate. viewname The name of the view in the StarTeam project on which
to operate. STCheckout Description

Checks out files from a StarTeam project.
The includes and excludes attributes function differently from other tasks in

Ant. Inclusion/exclusion by folder is NOT supported.
Parameters See also the required common StarTeam parameters.
Attribute Description Required rootstarteamfolder The root of the subtree

in the StarTeam repository from which to check out files. Defaults to the root
folder of the view (’/’). no rootlocalfolder The local folder which will be the
root of the tree to which files are checked out. If this is not supplied, then
the StarTeam ”default folder” associated with rootstarteamfolder is used. no
createworkingdirs creates local folders even when the corresponding StarTeam
folder is empty. Defaults to ”true”. no deleteuncontrolled if true, any files NOT
in StarTeam will be deleted. Defaults to ”true”. no includes Only check out files
that match at least one of the patterns in this list. Patterns must be separated
by commas. Patterns in excludes take precedence over patterns in includes.
no excludes Do not check out files that match at least one of the patterns in
this list. Patterns must be separated by commas. Patterns in excludes take
precedence over patterns in includes. no label Check out files as of this label.
The label must exist in starteam or an exception will be thrown. If not specified,
the most recent version of each file will be checked out. no recursive Indicates
if subfolders should be searched for files to check out. Defaults to ”true”. no
forced If true, checkouts will occur regardless of the status that StarTeam is
maintaining for the file. If rootlocalfolder is set then this should be set ”true”
as otherwise the checkout will be based on statuses which do not relate to the
target folder. Defaults to ”false”. no locked If true, file will be locked against
changes by other users. If false (default) has no effect. Either or neither, but
not both, may be true. unlocked If true, file will be unlocked so that other users
may change it. This is a way to reverse changes that have not yet been checked
in. If false (default) has no effect.

Examples

<stcheckout servername="STARTEAM"
serverport="49201"
projectname="AProject"
viewname="AView"
username="auser"
password="secret"
rootlocalfolder="C:\dev\buildtest\co"
force="true"

/>

The minimum necessary to check out files out from a StarTeam server. This
will check out all files in the AView view of the AProject project to C:
dev
buildtest

297 of 389

298 Ant Tasks

co. Empty folders in StarTeam will have local folders created for them and any
non-StarTeam files found in the tree will be deleted.

<stcheckout URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootlocalfolder="C:\dev\buildtest\co"
forced="true"

/>

And this is a simpler way of accomplishing the same thing as the previous
example, using the URL attribute.

<stcheckout URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootlocalfolder="C:\dev\buildtest\co"
rootstarteamfolder="\Dev"
excludes="*.bak *.old"
label="v2.6.001"
forced="true"

/>

This will check out all files from the Dev folder and below that do not end in
.bak or .old with the label v2.6.001.

<stcheckout URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootlocalfolder="C:\dev\buildtest\co"
includes="*.htm,*.html"
excludes="index.*"
forced="true"

/>

This is an example of overlapping includes and excludes attributes. Because ex-
cludes takes precedence over includes, files named index.html will not be checked
out by this command.

<stcheckout URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootlocalfolder="C:\dev\buildtest\co"
includes="*.htm,*.html"
excludes="index.*"
forced="true"
recursive="false"

/>

298 of 389

5.3 Optional Tasks 299

This example is like the previous one, but will only check out files in C:
dev
buildtest
co, because of the turning off of the recursive attribute.

<stcheckout URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootstarteamfolder="src/java"
rootlocalfolder="C:\dev\buildtest\co"
forced="true"

/>

<stcheckout URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootstarteamfolder="src/java"

/>

<stcheckout URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootstarteamfolder="src/java"
rootlocalfolder="C:\dev\buildtest\co\src\java"
forced="true"

/>

In the preceding three examples, assuming that the AProject project has a
default folder of ”C:
work
AProject”, the first example will check out the tree of files rooted in the src/java
folder of the AView view of the AProject in the StarTeam repository to a local
tree rooted at C:
dev
buildtest
co, the second to a tree rooted at C:
work
AProject
src
java (since no rootlocalfolder is specified) and the third to a tree rooted at C:
dev
buildtest
co

299 of 389

300 Ant Tasks

src
java. Note also, that since the second example does not set ”forced” true, only
those files which the repository considers out-of-date will be checked out.

STCheckin Description
Checks files into a StarTeam project. Optionally adds files and in the local

tree that are not managed by the repository to its control.
The includes and excludes attributes function differently from other tasks in

Ant. Inclusion/exclusion by folder is NOT supported.
Parameters See also the required common StarTeam parameters.
Attribute Description Required rootstarteamfolder The root of the subtree

in the StarTeam repository into which to files will be checked. Defaults to the
root folder of the view (’/’). no rootlocalfolder The local folder which will be
the root of the tree to which files are checked out. If this is not supplied, then
the StarTeam ”default folder” associated with rootstarteamfolder is used. no
comment Checkin comment to be saved with the file. no adduncontrolled if true,
any files or folders NOT in StarTeam will be added to the repository. Defaults
to ”false”. no includes Only check in files that match at least one of the patterns
in this list. Patterns must be separated by commas. Patterns in excludes take
precedence over patterns in includes. no excludes Do not check in files that
match at least one of the patterns in this list. Patterns must be separated
by commas. Patterns in excludes take precedence over patterns in includes. no
recursive Indicates if subfolders should be searched for files to check in. Defaults
to ”false”. no forced If true, checkins will occur regardless of the status that
StarTeam is maintaining for the file. If rootlocalfolder is set then this should
be set ”true” as otherwise the checkin will be based on statuses which do not
relate to the target folder. Defaults to ”false”. no unlocked If true, file will be
unlocked so that other users may change it. If false (default) lock status will
not change. no

Examples

<stcheckin servername="STARTEAM"
serverport="49201"
projectname="AProject"
viewname="AView"
username="auser"
password="secret"
rootlocalfolder="C:\dev\buildtest\co"
forced="true"

/>

The minimum necessary to check files into a StarTeam server. This will check
all files on the local tree rooted at C:
dev
buildtest
co into the AView view of the AProject project in the repository. For files and
folders in the local tree but not in starteam, nothing will be done. Since the
forced attribute is set, the files which are checked in will be checked in without

300 of 389

5.3 Optional Tasks 301

regard to what the StarTeam repository considers their status to be. This is a
reasonable choice of attributes since StarTeam’s status for a file is calculated
based on the local file in the StarTeam default directory, not on the directory
we are actually working with.

<stcheckin URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootlocalfolder="C:\dev\buildtest\co"
forced="true"

/>

And this is a simpler way of giving the same commands as the command above
using the URL shortcut.

<stcheckin URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootlocalfolder="C:\dev\buildtest\co"
rootstarteamfolder="\Dev"
excludes="*.bak *.old"
forced="true"

/>

This will check all files in to the Dev folder and below that do not end in .bak
or .old from the tree rooted at”C:
dev
buildtest
co” .

<stcheckin URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootlocalfolder="C:\dev\buildtest\co"
includes="*.htm,*.html"
excludes="index.*"
forced="true"

/>

This is an example of overlapping includes and excludes attributes. Because ex-
cludes takes precedence over includes, files named index.html will not be checked
in by this command.

<stcheckin URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootlocalfolder="C:\dev\buildtest\co"
rootstarteamfolder="src/java"

301 of 389

302 Ant Tasks

includes="*.htm,*.html"
excludes="index.*"
forced="true"
recursive="false"

/>

This example is like the previous one, but will only check in files from C:
dev
buildtest
co, because of the turning off of the recursive attribute.

<stcheckin URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootlocalfolder="C:\dev\buildtest\co"
rootstarteamfolder="src/java"
includes="version.txt"
forced="true"
recursive="false"

/>

This example is like the previous one, but will only check only in one file, C:
dev
buildtest
co
version.txt to the StarTeam folder src/java.

<stcheckin URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootlocalfolder="C:\dev\buildtest\co"
rootstarteamfolder="src/java"
includes="version.java"
forced="true"
recursive="false"
addUncontrolled="true"
comment="Fix Bug #667"

/>

This example is like the previous one, but will only check only in one file, C:
dev
buildtest
co
version.java to the StarTeam folder src/java. Because the addUncontrolled at-
tribute has been set, if StarTeam does not already control this file in this lo-
cation, it will be added to the repository. Also, it will write a comment to the
repository for this version of the file.

302 of 389

5.3 Optional Tasks 303

<stcheckin URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootstarteamfolder="src/java"
rootlocalfolder="C:\dev\buildtest\co"
forced="true"

/>

<stcheckin URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootstarteamfolder="src/java"

/>

<stcheckin URL="STARTEAM:49201/Aproject/AView"
username="auser"
password="secret"
rootstarteamfolder="src/java"
rootlocalfolder="C:\dev\buildtest\co\src\java"
forced="true"

/>

In the preceding three examples, assuming that the AProject project has a
default folder of C:
work
buildtest
co
AProject, the first example will check in files from a tree rooted at C:
dev
buildtest
co, the second from a tree rooted at C:
work
buildtest
co
AProject
src
java, and the third from a tree rooted at C:
dev
buildtest
co
src
java all to a tree rooted at src/java

303 of 389

304 Ant Tasks

STLabel Description
Creates a view label in StarTeam at the specified view. The label will be

classified by StarTeam as a ”build label”. This task will fail if there already
exexists in viewname a label with the same name as the label parameter.

Parameters See also the required common StarTeam parameters.
Attribute Description Required label The name to be given to the label yes

lastbuild The timestamp of the build that will be stored with the label. Must
be formatted yyyyMMddHHmmss yes description A description of the label to
be stored in the StarTeam project. no

Examples
This example shows the use of this tag. It will create a label named Version

6.2 with ”Thorough description” as its description.

<tstamp>
<format property="nowstamp" pattern="yyyyMMddHHmmss" locale="en"/>

</tstamp>
<stlabel URL="STARTEAM:49201/Aproject/AView"

username="auser"
password="secret"
label="Version 6.2"
lastbuild="${nowstamp}"
description="Thorough description"

/>

STList Description
Produces a listing of the contents of the StarTeam repository at the specified

view and StarTeamFolder. The listing will contain the name of the user, if any,
who has the file locked, the size of the file, its lastModifiedDate in the repository,
and the name of the file. Unless the rootLocalFolder is specified, listing will
also show the status of the local file in the default local directory relative to the
repository.

Parameters See also the required common StarTeam parameters.
Attribute Description Required rootstarteamfolder The root of the subtree

in the StarTeam repository to be listed. Defaults to the root folder of the view
(’/’). no rootlocalfolder The local folder which will be the root of the tree to
which files are compared. If this is not supplied, then the StarTeam ”default
folder” associated with rootstarteamfolder is used and a status field will appear
in the listing. Otherwise, the status field will not appear. no includes Only
list files that match at least one of the patterns in this list. Patterns must be
separated by commas. Patterns in excludes take precedence over patterns in
includes. no excludes Do not list files that match at least one of the patterns
in this list. Patterns must be separated by commas. Patterns in excludes take
precedence over patterns in includes. no label List files, dates, and statuses as
of this label. The label must exist in starteam or an exception will be thrown.
If not specified, the most recent version of each file will be listed. no recursive
Indicates if subfolders should be searched for files to list. Defaults to ”true”. no
Examples

304 of 389

5.3 Optional Tasks 305

¡stlist url=”WASHINGTON:49201/build” username=”auser” password=”secret”
/¿

The above command might produce the following listing:
[stlist] Folder: Build (Default folder: C:/work/build) [stlist] Folder: dev

(Default folder: C:/work/build/dev) [stlist] Out of date Sue Developer 1/1/02
7:25:47 PM CST 4368 build.xml [stlist] Missing George Hacker 1/1/02 7:25:49
PM CST 36 Test01.properties [stlist] Current 1/1/02 7:25:49 PM CST 4368
build2.xml [stlist] Folder: test (Default folder C:/work/build/dev/test) [stlist]
Missing 1/1/02 7:25:50 PM CST 4368 build2.xml

while adding a rootlocalfolder and an excludes param ...
¡stlist url=”WASHINGTON:49201/build” username=”auser” password=”secret”

rootlocalfolder=”srcdir2” excludes=”*.properties” /¿
might produce this listing. The status is missing because we are not going

against the default folder.
[stlist] overriding local folder to srcdir2 [stlist] Folder: Build (Local folder:

srcdir2) [stlist] Folder: dev (Local folder: srcdir2/dev) [stlist] Sue Developer
1/1/02 7:25:47 PM CST 4368 build.xml [stlist] 1/1/02 7:25:49 PM CST 4368
build2.xml [stlist] Folder: test (Local folder: srcdir2/dev/test) [stlist] 1/1/02
7:25:50 PM CST 4368 build2.xml

Starteam Deprecated
This task has been deprecated. Use the STCheckout task instead. Descrip-

tion Checks out files from a StarTeam project.
The includes and excludes attributes function differently from other tasks in

Ant. Multiple patterns must be separated by spaces, not commas. See the ex-
amples for more information. Parameters Attribute Description Required user-
name The username of the account used to log in to the StarTeam server. yes
password The password of the account used to log in to the StarTeam server.
yes servername The name of the StarTeam server. yes serverport The port
number of the StarTeam server. yes projectname The name of the StarTeam
project. yes viewname The name of the view in the StarTeam project. yes tar-
getfolder The folder to which files are checked out. What this precisely means is
determined by the targetFolderAbsolute param. yes targetFolderAbsolute De-
termines how targetfolder is interpreted, that is, whether the StarTeam ”default
folder” for the project is factored in (false) or whether targetFolder is a complete
mapping to foldername (true). If ”true”, the target tree will be rooted at target-
folder+”default folder”. If false, the target tree will be rooted at targetfolder.
Defaults to ”false”. no foldername The subfolder in the project from which
to check out files. no force Overwrite existing folders if this is set to ”true”.
Defaults to ”false”. no recursion Indicates if subfolders should be searched for
files to check out. Defaults to ”true”. no verbose Provides progress information.
Defaults to ”false”. no includes Only check out files that match at least one
of the patterns in this list. Patterns must be separated by spaces. Patterns in
excludes take precedence over patterns in includes. no excludes Do not check
out files that match at least one of the patterns in this list. Patterns must
be separated by spaces. Patterns in excludes take precedence over patterns in
includes. no

305 of 389

306 Ant Tasks

Examples

<starteam servername="STARTEAM"
serverport="49201"
projectname="AProject"
viewname="AView"
username="auser"
password="secret"
targetfolder="C:\dev\buildtest\co"

/>

The minimum necessary to check out files out from a StarTeam server. This
will check out all files in the AView view of the AProject project to C:
dev
buildtest
co.

<starteam servername="STARTEAM"
serverport="49201"
projectname="AProject"
viewname="AView"
username="auser"
password="secret"
targetfolder="C:\dev\buildtest\co"
foldername="\Dev"
excludes="*.bak *.old"
force="true"

/>

This will checkout all files from the Dev folder and below that do not end in
.bak or .old. The force flag will cause any existing files to be overwritten by the
version in StarTeam.

<starteam servername="STARTEAM"
serverport="49201"
projectname="AProject"
viewname="AView"
username="auser"
password="secret"
targetfolder="C:\dev\buildtest\co"
includes="*.htm *.html"
excludes="index.*"

/>

This is an example of overlapping includes and excludes attributes. Because ex-
cludes takes precedence over includes, files named index.html will not be checked
out by this command.

306 of 389

5.3 Optional Tasks 307

<starteam servername="STARTEAM"
serverport="49201"
projectname="AProject"
foldername="src/java"
viewname="AView"
username="auser"
password="secret"
targetfolder="C:\dev\buildtest\co"
targetfolderabsolute="true"

/>

<starteam servername="STARTEAM"
serverport="49201"
projectname="AProject"
foldername="src/java"
viewname="AView"
username="auser"
password="secret"
targetfolder="C:\dev\buildtest\co"
targetfolderabsolute ="false"

/>

<starteam servername="STARTEAM"
serverport="49201"
projectname="AProject"
foldername="src/java"
viewname="AView"
username="auser"
password="secret"
targetfolder="C:\dev\buildtest\co\src\java"
targetfolderabsolute="true"

/>

In the preceding three examples, assuming that the AProject project has a
default folder of ”AProject”, the first example will check the files located in
starteam under src/java out to a tree rooted at C:
dev
buildtest
co, the second to a tree rooted at C:
dev
buildtest
co

307 of 389

308 Ant Tasks

AProject
src
java and the third to a tree rooted at C:
dev
buildtest
co
src
java.

5.3.44 Stylebook

Description
This executes the apache Stylebook documentation generator. Unlike the

commandline version of this tool, all three arguments are required to run style-
book.

Note: This task depends on external libraries not included in the Ant dis-
tribution. See Library Dependencies for more information.

Being extended from ¡Java¿, all the parent’s attributes and options are avail-
able. Do not set any apart from the classpath as they are not guaranteed to be
there in future.

Parameters Attribute Description Required
book the book xml file that the documentation generation starts from Yes

skindirectory the directory that contains the stylebook skin Yes targetdirectory
the destination directory where the documentation is generated Yes

The user can also specify the nested ¡classpath¿ element which defines class-
path in which the task is executed.

Examples

<stylebook targetdirectory="build/docs"
book="src/xdocs/book.xml"
skindirectory="src/skins/myskin"/>

The above will generate documentation in build/docs starting from the book
src/xdocs/book.xml and using the skin located in directory src/skins/myskin.

5.3.45 Telnet

Description
Task to automate a remote telnet session. The task uses nested ¡read¿ to

indicate strings to wait for, and ¡write¿ tags to specify text to send.
If you do specify a userid and password, the system will assume a common

unix prompt to wait on. This behavior can be easily over-ridden.
Note: This task depends on external libraries not included in the Ant dis-

tribution. See Library Dependencies for more information.
Parameters Attribute Values Required userid the login id to use on the telnet

server. Only if password is specified password the login password to use on the
telnet server. Only if userid is specified server the address of the remote telnet

308 of 389

5.3 Optional Tasks 309

server. Yes port the port number of the remote telnet server. Defaults to port 23.
No initialCR send a cr after connecting (”yes”). Defaults to ”no”. No timeout
set a default timeout to wait for a response. Specified in seconds. Default is
no timeout. No Nested Elements The commands to send to the server, and
responses to wait for, are described as nested elements. read

declare (as a text child of this element) a string to wait for. The element
supports the timeout attribute, which overrides any timeout specified for the
task as a whole. It also has a string attribute, which is an alternative to speci-
fying the string as a text element. Always declare an opening and closing ¡read¿
element to ensure that statements are not sent before the connection is ready,
and that the connection is not broken before the final command has completed.
write

describes the text to send to the server. The echo boolean attribute controls
whether the string is echoed to the local log; this is ”true” by default Examples
A simple example of connecting to a server and running a command. This
assumes a prompt of ”ogin:” for the userid, and a prompt of ”assword:” for the
password.

<telnet userid="bob" password="badpass" server="localhost">
<read>/home/bob</read>
<write>ls</write>
<read string="/home/bob"/>

</telnet>

This task can be rewritten as:

<telnet server="localhost">
<read>ogin:</read>
<write>bob</write>
<read>assword:</read>
<write>badpass</write>
<read>/home/bob</read>
<write>ls</write>
<read>/home/bob</read>

</telnet>

A timeout can be specified at the ¡telnet¿ level or at the ¡read¿ level. This will
connect, issue a sleep command that is suppressed from displaying and wait 10
seconds before quitting.

<telnet userid="bob" password="badpass" server="localhost" timeout="20">
<read>/home/bob</read>
<write echo="false">sleep 15</write>
<read timeout="10">/home/bob</read>

</telnet>

The task can be used with other ports as well:

309 of 389

310 Ant Tasks

<telnet port="80" server="localhost" timeout="20">
<read/>
<write>GET / http/0.9</write>
<write/>
<read timeout="10"></HTML></read>

</telnet>

To use this task against the WinNT telnet service, you need to configure the
service to use classic authentication rather than NTLM negotiated authentica-
tion. This can be done in the Telnet Server Admin app: select ”display/change
registry settings”, then ”NTLM”, then set the value of NTLM to 1.

5.3.46 Test

Description
This is a primitive task to execute a unit test in the org.apache.testlet frame-

work.
This task is deprectated as the Testlet framework has been abandoned in

favor of JUnit by the Avalon community.
Note: This task depends on external libraries not included in the Ant dis-

tribution. See Library Dependencies for more information. Parameters At-
tribute Description Required showSuccess a boolean value indicating whether
tests should display a message on success No showBanner a boolean value in-
dicating whether a banner should be displayed when starting testlet engine No
forceShowTrace a boolean indicating that a stack trace is displayed on any fail-
ure No showTrace a boolean indicating that a stack trace is displayed on error
(but not normal failure) No

The user can also specify the nested ¡classpath¿ element which defines class-
path in which the task is executed. The user also specifies a subelement per
testlet executed which has content that specifies tasklet classname. Examples

¡test showSuccess=”false” showBanner=”false” showTrace=”true” forceShow-
Trace=”true”¿ ¡classpath refid=”test.classpath”/¿ ¡testlet¿org.foo.MyTestlet¡/testlet¿
¡testlet¿org.foo.MyOtherTestlet¡/testlet¿ ¡/test¿

The above will run the testlets org.foo.MyTestlet and org.foo.MyOtherTestlet

5.3.47 Translate

Description
Identifies keys in files delimited by special tokens and translates them with

values read from resource bundles.
A resource bundle contains locale-specific key-value pairs. A resource bundle

is a hierarchical set of property files. A bundle name makes up its base family
name. Each file that makes up this bundle has this name plus its locale. For
example, if the resource bundle name is MyResources, the file that contains
German text will take the name MyResources de. In addition to language,
country and variant are also used to form the files in the bundle.

310 of 389

5.3 Optional Tasks 311

The resource bundle lookup searches for resource files with various suffixes on
the basis of (1) the desired locale and (2) the default locale (basebundlename), in
the following order from lower-level (more specific) to parent-level (less specific):

basebundlename + "_" + language1 + "_" + country1 + "_" + variant1
basebundlename + "_" + language1 + "_" + country1
basebundlename + "_" + language1
basebundlename
basebundlename + "_" + language2 + "_" + country2 + "_" + variant2
basebundlename + "_" + language2 + "_" + country2
basebundlename + "_" + language2

The file names generated thus are appended with the string ”.properties” to
make up the file names that are to be used.

File encoding is supported. The encoding scheme of the source files, destina-
tion files and the bundle files can be specified. Destination files can be exlicitly
overwritten using the forceoverwrite attribute. If forceoverwrite is false, the
destination file is overwritten only if either the source file or any of the files
that make up the bundle have been modified after the destination file was last
modified.

FileSets are used to select files to translate.
Parameters
Attribute Description Required todir Destination directory where destina-

tion files are to be created. Yes starttoken The starting token to identify keys.
Yes endtoken The ending token to identify keys. Yes bundle Family name of re-
source bundle. Yes bundlelanguage Locale specific language of resource bundle.
Defaults to default locale’s language. No bundlecountry Locale specific country
of resource bundle. Defaults to default locale’s country. No bundlevariant Lo-
cale specific variant of resource bundle. Defaults to the default variant of the
country and language being used. No srcencoding Source file encoding scheme.
Defaults to system default file encoding. No destencoding Destination file en-
coding scheme. Defaults to source file encoding. No bundleencoding Resource
Bundle file encoding scheme. Defaults to source file encoding. No forceoverwrite
Overwrite existing files even if the destination files are newer. Defaults to ”no”.
No

Parameters specified as nested elements
fileset
FileSets are used to select files that contain keys for which value translated

files are to be generated.
Examples
Translate source file encoded in english into its japanese equivalent using a

resource bundle encoded in japanese.

<translate toDir="$(dest.dir}/ja"
starttoken="#"
endtoken="#"
bundle="resource/BaseResource"

311 of 389

312 Ant Tasks

bundlelanguage="ja"
forceoverwrite="yes"
srcencoding="ISO8859_1"
destencoding="SJIS"
bundleencoding="SJIS">
<fileset dir="${src.dir}">

<include name="**/*.jsp"/>
</fileset>

</translate>

5.3.48 Visual Age for Java Tasks

At the moment there are three tasks which help integrating the VAJ repository
contents into an external build process:

VAJLoad loads specified versions into the workspace VAJExport exports
specified packages into the file system VAJImport imports specified files into
the workspace

These tasks are described in detail below.
VAJLoad Description:
Loads a specified VAJ project version into the workspace. Parameters At-

tribute Description Required remote
name and port of a remote tool server. (format: ¡servername¿:¡port no¿).

If this attribute is set, the tasks will be executed on the specified tool server.
no Parameters specified as nested elements vajproject Attribute Description
Required name name of the VAJ project to load into the workspace yes version
name of the requested version yes

Example

<vajload remote="localhost:32767">
<vajproject name="My Testcases" version="1.7beta"/>
<vajproject name="JUnit" version="3.2"/>

</vajload>

VAJExport Description:
Exports Java source files, class files and/or resources from the workspace to

the file system. Exports can be specified by giving the VAJ project name and
package name(s). This works very similar to FileSets.

Parameters Attribute Description Required destdir location to store the ex-
ported files yes exportSources export source files (default: ”yes”) no exportRe-
sources export resource files (default: ”yes”) no exportClasses export class files
(default: ”no”) no exportDebugInfo include debug info in exported class files
(default: ”no”) no defaultexcludes

use default excludes when exporting (default: ”yes”). Default excludes are:
IBM*/**, Java class libraries/**, Sun class libraries*/**, JSP Page Compile
Generated Code/**, VisualAge*/** no overwrite overwrite existing files (de-
fault: ”yes”) no remote

312 of 389

5.3 Optional Tasks 313

name and port of a remote tool server. (format: ¡servername¿:¡port no¿). If
this attribute is set, the tasks will be executed on the specified tool server. no
Parameters specified as nested elements include specifies the packages to include
into the export Attribute Description Required name name of the VAJ project
and package to export. The first element of the name must be the project
name, then the package name elements separated by ’/’. yes exclude specifies
the packages to exclude from the export Attribute Description Required name
name of the VAJ project/package not to export yes

Example

<vajexport destdir="${src.dir}" exportResources="no">
<include name="MyProject/**"/>
<exclude name="MyProject/test/**"/>

</vajexport>

This example exports all packages in the VAJ project ’MyProject’, except pack-
ages starting with ’test’.

Default Excludes The default excludes are:
IBM*/** Java class libraries/** Sun class libraries*/** JSP Page Compile

Generated Code/** VisualAge*/**
VAJImport Description:
Imports Java source files, class files and/or resources from the file system

into VAJ. These imports can be specified with a fileset. Parameters Attribute
Description Required vajProject imported files are added to this VAJ project yes
importSources import source files (default: ”yes”) no importResources import
resource files (default: ”yes”) no importClasses import class files (default: ”no”)
no remote

name and port of a remote tool server. (format: ¡servername¿:¡port no¿).
If this attribute is set, the tasks will be executed on the specified tool server.
no Parameters specified as nested elements fileset A FileSet specifies the files to
import. Example

<vajimport project="Test" importClasses="true">
<fileset dir="${import.dir}">

<include name="com/sample/**/*.class"/>
<exclude name="com/sample/test/**"/>

</fileset>
</vajimport>

This example imports all class files in the directory ${import.dir}/com/sample
excluding those in the subdirectory test

The Plugin The tasks are usable within VAJ by running the org.apache.tools.ant.Main
class, but this is quite inconvenient. Therefore a small GUI is provided which
allows selecting a build file and executing its targets. This Plugin is accessible
from the VAJ Tools menu (see Usage). Installation

At the moment the installation has it’s rough edges. If something described
below doesn’t work for You, it’s probably not Your fault but incomplete/wrong
instructions. In this case, please contact one of the authors.

313 of 389

314 Ant Tasks

We assume C:
IBMVJava as VAJ install directory. If You have installed it elsewhere, adapt
the paths below.

Plugin
* install the Visual Age IDE Tools (via File-¿Quick Start-¿ Add feature-

¿’IBM IDE Utility class libraries’ * import an appropriate XML parser to VAJ
(we use Xerces 1.2.0 and are happy with it). Unfortunately the XML parser
delivered with VAJ (in the project ’IBM XML Parser for Java’) doesn’t work
with Ant. You have to remove that project (temporarily) from the workspace
before importing another XML implementation. * import the Ant sources and
resources into VAJ. * Create the directory C:
IBMVJava
ide
tools
org-apache-tools-ant. * export the Ant and XML parser class and resource files
into this directory. Be sure to select class files and resources. Sources don’t
have to be exported. Some optional tasks have errors and can’t be exported
when You don’t have the necessary packages in Your workspace (e.g. junit task,
ejbc task). If You need this tasks either import these packages into VAJ, too,
or copy the .class files directly from the binary distribution. * copy default.ini
(in ant
src.̇.
taskdefs
optional
ide) to C:
IBMVJava
ide
tools
org-apache-tools-ant
default.ini. * if you want to access this help from the Workbench, create the
directory C:
IBMVJava
ide
tools
org-apache-tools-ant
doc and copy the files VAJAntTool.html, toolmenu.gif and anttool1.gif to it.
* VAJ has to be restarted to recognize the new tool. * Now if You open the
context menu of a project, You should see the entry ’Ant Build’ in the Tools
submenu (see Usage). * Make sure the tool works as expected. Now You can
remove Ant and the imported XML parser from Your workspace (and optionally
add the IBM parser again).

Servlets for Remote Tool Access
* For a good introduction into the VAJ Remote Tool Access see the great in-

troduction from Glenn McAllister at http://www7.software.ibm.com/vad.nsf/Data/Document4366.
It is highly recommended to read this article before doing the installation (to
understand what you do :-)). * insert the following lines into C:

314 of 389

5.3 Optional Tasks 315

IBMVJava
ide
tools
com-ibm-ivj-toolserver
servlets
servlet.properties. Typically this file is empty. If not, be careful not to delete
the other lines.

servlet.vajload.code=org.apache.tools.ant.taskdefs.optional.ide.VAJLoadServlet
servlet.vajexport.code=org.apache.tools.ant.taskdefs.optional.ide.VAJExportServlet
servlet.vajimport.code=org.apache.tools.ant.taskdefs.optional.ide.VAJImportServletName

* export the following classes from the package org.apache.tools.ant to C:
IBMVJava
ide
tools
com-ibm-ivj-toolserver
servlets
: BuildException DirectoryScanner FileScanner Location * export the following
classes from the package org.apache.tools.ant.taksdefs.optional.ide to C:
IBMVJava
ide
tools
com-ibm-ivj-toolserver
servlets
: VAJUtil VAJExportServlet VAJImportServlet VAJLoadServlet VAJLocalUtil
VAJProjectDescription VAJToolsServlet VAJWorkspaceScanner * configure the
Remote Access (via Window-¿Options..., then choose ’Remote Access To Tool
API’) as shown in the following picture:

Now you should be able to execute VAJ Tasks from the command line. Usage
Plugin

When the tool is installed correctly and your Ant build file is configured,
it is really easy to use. Go to your Workbench, select the project you want to
deploy and open its context menu. In the submenu Tools you should find the
new entry Ant Build. Klick it to start the tool! After a short time this frame
should pop up: This frame contains the following elements:

* A menubar with some options described later * The name of your selected
VAJ project * An entry field for the Ant XML buildfile with a browse [...]
button. The full qualified filename, including the directory is needed here. *
A list with tasks specified in the buildfile. Until your first save of the build
info (described later), this list will be empty. When loading a build file by
the (Re)Load button, this list is filled with all tasks which have a description
attribute. The task you select in this list will be executed when pressing the
Execute button. * A pulldown box for specifying the log level. * Four buttons.
Two of them I have already described. The other are the Stop button to cancel
a running build and the third one is just the Close button to exit our small tool!
* Note that the build is canceled on the next console output after pressing the
Stop button, not directly after pressing it.

315 of 389

316 Ant Tasks

After you have set up your buildprocess you might find it useful to save
the data you’ve just entered, so we implemented an option to save it to the
repository into your selected project. Make sure that you have an open edition
of your project before selecting Save BuildInfo To Repository from the File
menu. Now your information is saved to this edition of your project and will
be loaded automatically the next time you start Ant Build. If you have closed
the log window accidentally, it can be reopened with the Log item in the File
menu, and if you want to know who developed this, just select About in the
Help menu. Servlets for Remote Tool Access

With the servlets installed and the remote access running you can use Ant
from the command line without any restrictions. Just make sure the remote
attribute in your build file is set correctly. Frequently Asked Questions

Q: If I try to load a build file, I get the error ”Can’t load default task list”.
Why? A: Ant not only contains class files, but also resource files. This mess-
sage appears if the file .../org/apache/tools/ant/taskdefs/defaults.properties is
missing. Make sure that you import/export not only java/class files, but also
all resource files when importing/exporting Ant.

Q: I want to load, export and build more then one Visual Age project to one
jar! How to? A: The VA tasks are able to load and export several Projects all at
once. You can choose whatever project you like for storing the tool information,
it doesn’t really matter

Q: When I load my build file, the list of targets is empty. Why? A: You
need to add the optional ”description” parameter to the targets you want to
come up in the list. Then reload the build file in the ”ant build” tool. We
chose to display only targets with description to allow the build file developer
to distinguish between targets for end users and helper targets.

Q: Is there a sample build file available? A: Now you can find an example
in this manual

Q: Why does it export my entire workspace when I’ve already implicitly
selected a project when starting the Tool? A: This selection does not carry
into the buildfile you are using. Set the Project name at the beginning of the
”includes” parameter.

Q: When I import Ant into my Workspace, I get Problems reported. Can I
ignore them? A: It depends on the problems reported, and what you want to
do with Ant. Problems you can’t ignore:

* Classes from javax.xml.parser missing - install a compatible parser (see
installation) * Classes from com.ibm.ivj.util missing - install the Visual Age
IDE Utility feature (see installation). * Errors in optional tasks you use within
your build file

Q: I want to use the same buildfile both within Visual Age and from the
command line using my regular Ant environment. What do I need to be aware
of? A: You have to specifie a remote server via the ’remote’ attribute. Otherwise
the three Visual Age tasks won’t work when executing Ant from the command
line.

Q: I can export packages from project ’ABC’, but not from project ’XYZ’ !
Why? A: Common reasons are:

316 of 389

5.3 Optional Tasks 317

* The project is excluded by the default excludes (see attribute ’defaultex-
cludes’ of VAJExport) * When looking at the project in the workspace, it is
often difficult to distinguish between project name and version name (e.g. as in
’My GUI Components Java 2 3.5’). Check if you have the right project name
by switching off the version name display temporarilly.

Q: How do I control the import/export of sourcefiles, compiled files and
project resources explicity? A: Via the Boolean values exportClasses (default
false) exportSources (default true) and exportResources (default true). In some
situations, Resources are not exported correctly without this being explicity set.
VAJ doesn’t export resources correctly if a package contains only resources (see
below). Known Problems

* Exporting a package containing just resources doesn’t work. This is a VAJ
Tool API bug. Workaround: create a dummy class and set ’exportSources’ to
false.

VisualAge for Java Versions This tool integration has been tested with ver-
sions 3.02 and 3.5 of VisualAge for Java. It should run with the 2.x Versions,
too, but we didn’t try. The graphical user interface is built with AWT so it is
JDK independent by now.

History

1.0 2000/09/11 Initial Version
1.1 2001/02/14 Added Task documentation and more FAQs (thanks to Richard Bourke for the FAQ additions)
1.2 2001/07/02

Added documentation of new remote feature.
Minor corrections.

5.3.49 Microsoft Visual SourceSafe Tasks

vssget Retrieves a copy of the specified VSS file(s). vsslabel Assigns a label to
the specified version or current version of a file or project. vsshistory Shows the
history of a file or project in VSS. vsscheckin Updates VSS with changes made
to a checked out file, and unlocks the VSS master copy. vsscheckout Copies a
file from the current project to the current folder, for the purpose of editing.
vssadd Adds a new file into the VSS Archive vsscp Change the current project
being used in VSS vsscreate Creates a project in VSS. Task Descriptions VssGet
Description Task to perform GET commands to Microsoft Visual SourceSafe.

If you specify two or more attributes from version, date and label only one
will be used in the order version, date, label. Parameters Attribute Values
Required vsspath SourceSafe path which specifies the project/file(s) you wish
to perform the action on. You should not specify the leading dollar-sign - it is
prepended by Ant automatically. Yes login username[,password] - The username
and password needed to get access to VSS. Note that you may need to specify
both (if you have a password) - Ant/VSS will hang if you leave the password
out and VSS does not accept login without a password. No localpath Override
the working directory and get to the specified path No ssdir directory where

317 of 389

318 Ant Tasks

ss.exe resides. By default the task expects it to be in the PATH. No serverPath
directory where ss.ini resides. No writable true or false¡; default false/td¿ No
recursive true or false; default false. Note however that in the SourceSafe UI ,
there is a setting accessed via Tools/Options/GeneralTab called ”Act on projects
recursively”. If this setting is checked, then the recursive attribute is effectively
ignored, and the get will always be done recursively No version a version number
to get No, only one of these allowed date a date stamp to get at label a label to
get for quiet suppress output (off by default) No autoresponse What to respond
with (sets the -I option). By default, -I- is used; values of Y or N will be
appended to this. No

Note that only one of version, date or label should be specified
Examples

<vssget localPath="C:\mysrc\myproject"
recursive="true"
label="Release1"
login="me,mypassword"
vsspath="/source/aProject"
writable="true"/>

Does a get on the VSS-Project $/source/myproject using the username me and
the password mypassword. It will recursively get the files which are labeled
Release1 and write them to the local directory C:
mysrc
myproject. The local files will be writable.

VssLabel Description Task to perform LABEL commands to Microsoft Vi-
sual SourceSafe.

Assigns a label to the specified version or current version of a file or project.
Parameters Attribute Values Required vsspath SourceSafe path which speci-

fies the project/file(s) you wish to perform the action on. You should not specify
the leading dollar-sign - it is prepended by Ant automatically. Yes login user-
name[,password] - The username and password needed to get access to VSS.
Note that you may need to specify both (if you have a password) - Ant/VSS
will hang if you leave the password out and VSS does not accept login without a
password. No ssdir directory where ss.exe resides. By default the task expects it
to be in the PATH. No serverPath directory where srssafe.ini resides. No label
A label to apply to the hierarchy Yes version An existing file or project version
to label. By default the current version is labelled. No comment The comment
to use for this label. Empty or ’-’ for no comment. No

autoresponse What to respond with (sets the -I option). By default, -I- is
used; values of Y or N will be appended to this. No

Examples

<vsslabel vsspath="/source/aProject"
login="me,mypassword"
label="Release1"/>

318 of 389

5.3 Optional Tasks 319

Labels the current version of the VSS project $/source/aProject with the label
Release1 using the username me and the password mypassword.

<vsslabel vsspath="/source/aProject/myfile.txt"
version="4"
label="1.03.004"/>

Labels version 4 of the VSS file $/source/aProject/myfile.txt with the label
1.03.004. If this version already has a label, the operation (and the build) will
fail.

VssHistory Description Task to perform HISTORY commands to Microsoft
Visual SourceSafe. Parameters Attribute Values Required vsspath SourceSafe
path which specifies the project/file(s) you wish to perform the action on. You
should not specify the leading dollar-sign - it is prepended by Ant automatically.
Yes login username[,password] - The username and password needed to get
access to VSS. Note that you may need to specify both (if you have a password)
- Ant/VSS will hang if you leave the password out and VSS does not accept
login without a password. No ssdir directory where ss.exe resides. By default
the task expects it to be in the PATH. No serverPath directory where srssafe.ini
resides. No fromDate Start date for comparison See below toDate End date
for comparison See below dateFormat Format of dates in fromDate and toDate.
Used when calculating dates with the numdays attribute. This string uses the
formatting rules of SimpleDateFormat. Defaults to DateFormat.SHORT. No
fromLabel Start label for comparison No toLabel Start label for comparison No
numdays The number of days for comparison. See below output File to write
the diff. No recursive true or false No style brief, codediff, default or nofile. The
default is default. No user Name the user whose changes we would like to see
No Specifying the time-frame

There are different ways to specify what time-frame you wish to evaluate:
* Changes between two dates: Specify both fromDate and toDate * Changes

before a date: Specify toDate * Changes after a date: Specify fromDate *
Changes X Days before a date: Specify toDate and (negative!) numDays *
Changes X Days after a date: Specify fromDate and numDays

Examples

<vsshistory vsspath="/myProject" recursive="true"
fromLabel="Release1"
toLabel="Release2"/>

Shows all changes between ”Release1” and ”Release2”.

<vsshistory vsspath="/myProject" recursive="true"
fromDate="01.01.2001"
toDate="31.03.2001"/>

Shows all changes between January 1st 2001 and March 31st 2001 (in Germany,
date must be specified according to your locale).

319 of 389

320 Ant Tasks

<tstamp>
<format property="to.tstamp" pattern="M-d-yy;h:mma" />

</tstamp>

<vsshistory vsspath="/myProject" recursive="true"
numDays="-14"
dateFormat="M-d-yy;h:mma"
toDate="${to.tstamp}"/>

Shows all changes in the 14 days before today. VssCheckin Description Task
to perform CHECKIN commands to Microsoft Visual SourceSafe. Parame-
ters Attribute Values Required vsspath SourceSafe path which specifies the
project/file(s) you wish to perform the action on. You should not specify the
leading dollar-sign - it is prepended by Ant automatically. Yes login user-
name[,password] - The username and password needed to get access to VSS.
Note that you may need to specify both (if you have a password) - Ant/VSS
will hang if you leave the password out and VSS does not accept login without a
password. No localpath Override the working directory and get to the specified
path No ssdir directory where ss.exe resides. By default the task expects it to
be in the PATH. No serverPath directory where srssafe.ini resides. No writable
true or false No recursive true or false No comment Comment to use for the files
that where checked in. No autoresponse ’Y’, ’N’ or empty. Specify how to reply
to questions from VSS. No

Examples

<vsscheckin vsspath="/test/test*"
localpath="D:\build\"
comment="Modified by automatic build"/>

Checks in the file(s) named test* in the project test using the local directory D:
build.

VssCheckout Description Task to perform CHECKOUT commands to Mi-
crosoft Visual SourceSafe.

If you specify two or more attributes from version, date and label only one
will be used in the order version, date, label.

Parameters Attribute Values Required vsspath SourceSafe path which speci-
fies the project/file(s) you wish to perform the action on. You should not specify
the leading dollar-sign - it is prepended by Ant automatically. Yes login user-
name[,password] - The username and password needed to get access to VSS.
Note that you may need to specify both (if you have a password) - Ant/VSS
will hang if you leave the password out and VSS does not accept login without a
password. No localpath Override the working directory and get to the specified
path No ssdir directory where ss.exe resides. By default the task expects it to
be in the PATH. No serverPath directory where srssafe.ini resides. No writable
true or false No recursive true or false No version a version number to get No,
only one of these allowed date a date stamp to get at label a label to get for

Examples

320 of 389

5.3 Optional Tasks 321

<vsscheckout vsspath="/test"
localpath="D:\build"
recursive="true"
login="me,mypass"/>

Does a recursive checkout of the project test to the directory D:
build. VssAdd Description Task to perform ADD commands to Microsoft Vi-
sual SourceSafe. Parameters Attribute Values Required localpath Specify the
local file(s) to add to VSS Yes login username[,password] - The username and
password needed to get access to VSS. Note that you may need to specify both
(if you have a password) - Ant/VSS will hang if you leave the password out
and VSS does not accept login without a password. No ssdir directory where
ss.exe resides. By default the task expects it to be in the PATH. No serverPath
directory where srssafe.ini resides. No writable true or false No recursive true
or false No comment Comment to use for the files that where checked in. No
autoresponse ’Y’, ’N’ or empty. Specify how to reply to questions from VSS. No

Examples

<vssadd localpath="D:\build\build.00012.zip"
comment="Added by automatic build"/>

Add the file named build.00012.zip into the project current working directory
(see vsscp).

VssCp Description
Task to perform CP (Change Project) commands to Microsoft Visual Source-

Safe.
This task is typically used before a VssAdd in order to set the target project

Parameters Attribute Values Required vsspath SourceSafe path which speci-
fies the project you wish to make the current project. You should not specify
the leading dollar-sign - it is prepended by Ant automatically. Yes login user-
name[,password] - The username and password needed to get access to VSS.
Note that you may need to specify both (if you have a password) - Ant/VSS
will hang if you leave the password out and VSS does not accept login without
a password. No ssdir directory where ss.exe resides. By default the task expects
it to be in the PATH. No serverPath directory where srssafe.ini resides. No

Examples

<vsscp vsspath="/Projects/ant"/>

Sets the current VSS project to $/Projects/ant. VssCreate Description Task to
perform CREATE commands to Microsoft Visual Source Safe.

Creates a new project in VSS. Parameters Attribute Values Required login
username,password No vsspath SourceSafe path of project to be created Yes
ssdir directory where ss.exe resides. By default the task expects it to be in the
PATH. No quiet suppress output (off by default) No failOnError fail if there
is an error creating the project (true by default) No autoresponse What to
respond with (sets the -I option). By default, -I- is used; values of Y or N will

321 of 389

322 Ant Tasks

be appended to this. No comment The comment to use for this label. Empty
or ’-’ for no comment. No

Examples

<vsscreate vsspath="/existingProject/newProject"/>

Creates the VSS-Project $/existingProject/newProject.

5.3.50 Weblogic JSP Compiler

Description
Class to precompile JSP’s using weblogic’s jsp compiler (weblogic.jspc) Tested

only on Weblogic 4.5.1 - NT4.0 and Solaris 5.7,5.8 Parameters Attribute Values
Required src root of source tree for JSP, ie, the document root for your weblogic
server Yes dest root of destination directory, what you have set as WorkingDir
in the weblogic properties Yes package start package name under which your
JSP’s would be compiled Yes classpath Class path to use when compiling jsp’s
Yes

A classpath should be set which contains the weblogic classes as well as all
application classes referenced by the JSP. The system classpath is also appended
when the jspc is called, so you may choose to put everything in the classpath
while calling Ant. However, since presumably the JSP’s will reference classes
being build by Ant, it would be better to explicitly add the classpath in the
task

The task checks timestamps on the JSP’s and the generated classes, and
compiles only those files that have changed.

It follows the weblogic naming convention of putting classes in dirName/ fileName.class
for dirname/fileName.jsp

Example

<target name="jspcompile" depends="compile">
<wljspc src="c:\\weblogic\\myserver\\public_html"

dest="c:\\weblogic\\myserver\\serverclasses" package="myapp.jsp">
<classpath>

<pathelement location="${weblogic.classpath}"/>
<pathelement path="${compile.dest}"/>

</classpath>
</wljspc>

</target>

Limitations
* This works only on weblogic 4.5.1 * It compiles the files thru the Classic

compiler only. * Since it is my experience that weblogic jspc throws out of
memory error on being given too many files at one go, it is called multiple times
with one jsp file each.

322 of 389

5.3 Optional Tasks 323

5.3.51 XmlValidate

Description
This task checks xml files are valid (or only well formed). The task uses the

SAX2 parser implementation provided by JAXP by default (probably the one
that is used by Ant itself), but one can specify any SAX1/2 parser if needed.

This task supports the use of nested xmlcatalog elements and/or nested ¡dtd¿
elements which are used to resolve DTDs and entities. Parameters Attribute
Description Required file the file(s) you want to check. (optionally can use
an embedded fileset) No lenient if true, only check the xml document is well
formed (ignored if the specified parser is as SAX1 parser) No classname the
parser to use. No classpathref where to find the parser class. Optionally can
use an embedded classpath element. No failonerror fails on a error if set to
true (defaults to true). No warn log parser warn events. No Nested Elements
dtd ¡dtd¿ is used to specify different locations for DTD resolution. Attribute
Description Required publicId Public ID of the DTD to resolve Yes location
Location of the DTD to use, which can be a file, a resource, or a URL Yes
xmlcatalog

The xmlcatalog element is used to perform Entity resolution.
Examples

<xmlvalidate file="toto.xml"/>

<xmlvalidate failonerror="no" lenient="yes" warn="yes"
classname="org.apache.xerces.parsers.SAXParser">
classpath="lib/xerces.jar">

<fileset dir="src" includes="style/*.xsl"/>
</xmlvalidate>

<xmlvalidate file="struts-config.xml" warn="false">
<dtd publicId="-//Apache Software Foundation//DTD Struts Configuration 1.0//EN"

location="struts-config_1_0.dtd"/>
</xmlvalidate>

<xmlvalidate failonerror="no">
<fileset dir="${project.dir}" includes="**/*.xml"/>
<xmlcatalog refid="mycatalog"/>

</xmlvalidate>

<xmlvalidate failonerror="no">
<fileset dir="${project.dir}" includes="**/*.xml"/>
<xmlcatalog>

<dtd
publicId="-//ArielPartners//DTD XML Article V1.0//EN"
location="com/arielpartners/knowledgebase/dtd/article.dtd"/>

</xmlcatalog>
</xmlvalidate>

323 of 389

324 Ant Tasks

324 of 389

Chapter 6

Concepts and Types

6.1 Concepts

6.1.1 build.sysclasspath

The value of the build.sysclasspath property control how the system classpath,
ie. the classpath in effect when Ant is run, affects the behaviour of classpaths
in Ant. The default behavior varies from Ant to Ant task.

The values and their meanings are:
only Only the system classpath is used and class-

paths specified in build files, etc are ignored.
This situation could be considered as the per-
son running the build file knows more about
the environment than the person writing the
build file

ignore The system classpath is ignored. This situa-
tion is the reverse of the above. The person
running the build trusts the build file writer
to get the build file right

last The classpath is concatenated to any specified
classpaths at the end. This is a compromise,
where the build file writer has priority.

first Any specified classpaths are concatenated to
the system classpath. This is the other form
of compromise where the build runner has pri-
ority.

6.1.2 Common Attributes of all Tasks

All tasks share the following attributes:

325 of 389

326 Concepts and Types

Attribute Description Required
id Unique identifier for this task instance, can be

used to reference this task in scripts.
No

taskname A different name for this task instance - will
show up in the logging output.

No

description Room for your comments No

6.2 Core Types

6.2.1 Description

Description

Allows for a description of the project to be specified that will be included in
the output of the ant -projecthelp command.

Parameters

(none)

Examples

<description>
This buildfile is used to build the Foo subproject within
the large, complex Bar project.
</description>

6.2.2 Directory-based Tasks

Some tasks use directory trees for the actions they perform. For example, the
javac task, which compiles a directory tree with .java files into .class files, is
one of these directory-based tasks. Because some of these tasks do so much
work with a directory tree, the task itself can act as an implicit FileSet.

Whether the fileset is implicit or not, it can often be very useful to work
on a subset of the directory tree. This section describes how you can select a
subset of such a directory tree when using one of these directory-based tasks.

Ant gives you two ways to create a subset of files in a fileset, both of which
can be used at the same time:

1. Only include files and directories that match any include patterns and do
not match any exclude patterns in a given PatternSet.

2. Select files based on selection criteria defined by a collection of selector
nested elements.

326 of 389

6.2 Core Types 327

Patternset

We said that Directory-based tasks can sometimes act as an implicit <fileset>,
but in addition to that, a FileSet acts as an implicit <patternset>.

The inclusion and exclusion elements of the implicit PatternSet can be spec-
ified inside the directory-based task (or explicit fileset) via either:

• the attributes includes and excludes.

• nested elements <include> and <exclude>.

• external files specified with the attributes includesfile and excludesfile.

• external files specified with the nested elements <includesfile> and
<excludesfile>.

When dealing with an external file, each line of the file is taken as a pattern
that is added to the list of include or exclude patterns.

When both inclusion and exclusion are used, only files/directories that match
at least one of the include patterns and don’t match any of the exclude patterns
are used. If no include pattern is given, all files are assumed to match the
include pattern (with the possible exception of the default excludes).

Patterns
As described earlier, patterns are used for the inclusion and exclusion of files.
These patterns look very much like the patterns used in DOS and UNIX:

’*’ matches zero or more characters, ’?’ matches one character.
Examples:

*.java matches .java, x.java and FooBar.java, but not FooBar.xml (does not
end with .java).

?.java matches x.java, A.java, but not .java or xyz.java (both don’t have one
character before .java).

Combinations of *’s and ?’s are allowed.
Matching is done per-directory. This means that first the first directory in

the pattern is matched against the first directory in the path to match. Then
the second directory is matched, and so on. For example, when we have the
pattern /?abc/*/*.java and the path /xabc/foobar/test.java, the first ?abc is
matched with xabc, then * is matched with foobar, and finally *.java is matched
with test.java. They all match, so the path matches the pattern.

To make things a bit more flexible, we add one extra feature, which makes
it possible to match multiple directory levels. This can be used to match a
complete directory tree, or a file anywhere in the directory tree. To do this,
** must be used as the name of a directory. When ** is used as the name
of a directory in the pattern, it matches zero or more directories. For exam-
ple: /test/** matches all files/directories under /test/, such as /test/x.java, or
/test/foo/bar/xyz.html, but not /xyz.xml.

There is one ”shorthand” - if a pattern ends with / or then ** is appended.
For example, mypackage/test/ is interpreted as if it were mypackage/test/**.

327 of 389

328 Concepts and Types

Example patterns

**/CVS/* Matches all files in CVS directories that can be
located anywhere in the directory tree.
Matches:
CVS/Repository
org/apache/CVS/Entries
org/apache/jakarta/tools/ant/CVS/Entries

But not:
org/apache/CVS/foo/bar/Entries (foo/bar/
part does not match)

org/apache/jakarta/** Matches all files in the org/apache/jakarta directory
tree.
Matches:
org/apache/jakarta/tools/ant/docs/index.html
org/apache/jakarta/test.xml

But not:
org/apache/xyz.java

(jakarta/ part is missing).

org/apache/**/CVS/* Matches all files in CVS directories that are located
anywhere in the directory tree under org/apache.

Matches:
org/apache/CVS/Entries
org/apache/jakarta/tools/ant/CVS/Entries

But not:
org/apache/CVS/foo/bar/Entries

(foo/bar/ part does not match)

hline **/test/** Matches all files that have a test element in their
path, including test as a filename.

When these patterns are used in inclusion and exclusion, you have a powerful
way to select just the files you want.

Selectors

The <fileset>, whether implicit or explicit in the directory-based task, also
acts as an <and> selector container. This can be used to create arbitrarily
complicated selection criteria for the files the task should work with. See the

328 of 389

6.2 Core Types 329

Selector documentation for more information.

Standard Tasks/Filesets

Many of the standard tasks in ant take one or more filesets which follow the
rules given here. This list, a subset of those, is a list of standard ant tasks that
can act as an implicit fileset:

<checksum>
<copydir> (deprecated)
<delete>
<dependset>
<fixcrlf>
<javac>
<replace>
<rmic>
<style> (aka <xslt>)
<tar>
<zip>
<ddcreator>
<ejbjar>
<ejbc>
<cab>
<icontract>
<native2ascii>
<netrexxc>
<renameextensions>
<depend>
<ilasm>
<csc>
<vbc>
<translate>
<vajexport>
<image>
<jlink> (deprecated)
<jspc>
<wljspc>

Examples

<copy todir="${dist}">
<fileset dir="${src}"

includes="**/images/*"
excludes="**/*.gif"

/>
</copy>

329 of 389

330 Concepts and Types

This copies all files in directories called images that are located in the direc-
tory tree defined by ${src} to the destination directory defined by ${dist}, but
excludes all *.gif files from the copy.

<copy todir="${dist}">
<fileset dir="${src}">

<include name="**/images/*"/>
<exclude name="**/*.gif"/>

</fileset>
</copy>

The same as the example above, but expressed using nested elements.

<delete dir="${dist}">
<include name="**/images/*"/>
<exclude name="**/*.gif"/>

</delete>

Deleting the original set of files, the delete task can act as an implicit fileset.
Default Excludes There are a set of definitions that are excluded by default

from all directory-based tasks. They are:

**/*~
**/#*#
**/.#*
**/%*%
**/._*
**/CVS
/CVS/
**/.cvsignore
**/SCCS
/SCCS/
**/vssver.scc
**/.svn
/.svn/
**/.DS_Store

If you do not want these default excludes applied, you may disable them with
the defaultexcludes=”no” attribute.

6.2.3 DirSet

DirSets are groups of directories. These directories can be found in a directory
tree starting in a base directory and are matched by patterns taken from a
number of PatternSets. DirSets can appear inside tasks that support this feature
or at the same level as target (i.e., as children of <project>).

PatternSets can be specified as nested <patternset> elements. In addi-
tion, DirSet holds an implicit PatternSet and supports the nested <include>,

330 of 389

6.2 Core Types 331

<includesfile>, <exclude> and <excludesfile> elements of <patternset>
directly, as well as <patternset>’s attributes.

Attribute Description Required
dir The root of the directory tree of this DirSet. Yes
includes A comma- or space-separated list of patterns

of directories that must be included; all direc-
tories are included when omitted.

No

includesfile The name of a file; each line of this file is taken
to be an include pattern.

No

excludes A comma- or space-separated list of patterns
of directories that must be excluded; no direc-
tories are excluded when omitted.

No

excludesfile The name of a file; each line of this file is taken
to be an exclude pattern.

No

casesensitive Specifies whether case-sensitivty should be ap-
plied (true—yes—on or false—no—off).

No; defaults
to true.

followsymlinks Shall symbolic links be followed? Defaults to
true. See fileset’s documentation.

No

Examples

<dirset dir="${build.dir}">
<include name="apps/**/classes"/>
<exclude name="apps/**/*Test*"/>

</dirset>

Groups all directories named classes found under the apps subdirectory of
${build.dir}, except those that have the text Test in their name.

<dirset dir="${build.dir}">
<patternset id="non.test.classes">

<include name="apps/**/classes"/>
<exclude name="apps/**/*Test*"/>

</patternset>
</dirset>

Groups the same directories as the above example, but also establishes a Pat-
ternSet that can be referenced in other <dirset> elements, rooted at a different
directory.

<dirset dir="${debug_build.dir}">
<patternset refid="non.test.classes"/>

</dirset>

Groups all directories in directory ${debug build.dir}, using the same pat-
terns as the above example.

331 of 389

332 Concepts and Types

6.2.4 FileList

FileLists are explicitly named lists of files. Whereas FileSets act as filters, re-
turning only those files that exist in the file system and match specified patterns,
FileLists are useful for specifying files that may or may not exist. Multiple files
are specified as a list of files, relative to the specified directory, with no support
for wildcard expansion (filenames with wildcards will be included in the list
unchanged). FileLists can appear inside tasks that support this feature or at
the same level as <target> (i.e., as children of <project>).

Attribute Description Required
dir The base directory of this

FileList.
Yes

files The list of file names. Yes
Examples

<filelist
id="docfiles"
dir="${doc.src}"
files="foo.xml,bar.xml"/>

The files doc.src/foo.xmlanddoc.src/bar.xml. Note that these files may not
(yet) actually exist.

<filelist
id="docfiles"
dir="${doc.src}"
files="foo.xml

bar.xml"/>

Same files as the example above.

<filelist refid="docfiles"/>

Same files as the example above.

6.2.5 FileSet

FileSets are groups of files. These files can be found in a directory tree start-
ing in a base directory and are matched by patterns taken from a number of
PatternSets and Selectors. FileSets can appear inside tasks that support this
feature or at the same level as target - i.e., as children of project.

PatternSets can be specified as nested <patternset> elements. In addi-
tion, FileSet holds an implicit PatternSet and supports the nested <include>,
<includesfile>, <exclude> and <excludesfile> elements of PatternSet di-
rectly, as well as PatternSet’s attributes.

Selectors are available as nested elements.within the FileSet. If any of the
selectors within the FileSet do not select the file, the file is not considered part
of the FileSet. This makes FileSets euqivalent to an <and> selector container.

332 of 389

6.2 Core Types 333

Attribute Description Required
dir the root of the directory tree of this FileSet. Yes
defaultexcludes indicates whether default excludes should be used

or not (yes — no); default excludes are used when
omitted.

No

includes comma- or space-separated list of patterns of files
that must be included; all files are included when
omitted.

No

includesfile the name of a file; each line of this file is taken to be
an include pattern.

No

excludes comma- or space-separated list of patterns of files
that must be excluded; no files (except default ex-
cludes) are excluded when omitted.

No

excludesfile the name of a file; each line of this file is taken to be
an exclude pattern.

No

casesensitive Must the file system be treated in a case sensitive
way? Defaults to true.

No

followsymlinks Shall symbolic links be followed? Defaults to true.
See the note below.

No

Note: All files/directories for which the canonical path is different from its
path are considered symbolic links. On Unix systems this usually means the file
really is a symbolic links but it may lead to false results on other platforms.

Examples

<fileset dir="${server.src}" casesensitive="yes">
<include name="**/*.java"/>
<exclude name="**/*Test*"/>

</fileset>

Groups all files in directory ${server.src} that are Java source files and don’t
have the text Test in their name.

<fileset dir="${server.src}" casesensitive="yes">
<patternset id="non.test.sources">

<include name="**/*.java"/>
<exclude name="**/*Test*"/>

</patternset>
</fileset>

Groups the same files as the above example, but also establishes a PatternSet
that can be referenced in other <fileset> elements, rooted at a different direc-
tory.

<fileset dir="${client.src}" >
<patternset refid="non.test.sources"/>

</fileset>

Groups all files in directory ${client.src}, using the same patterns as the
above example.

333 of 389

334 Concepts and Types

<fileset dir="${server.src}" casesensitive="yes">
<filename name="**/*.java"/>
<filename name="**/*Test*" negate="true"/>

</fileset>

Groups the same files as the top example, but using the <filename> selector.

<fileset dir="${server.src}" casesensitive="yes">
<filename name="**/*.java"/>
<not>

<filename name="**/*Test*"/>
</not>

</fileset>

Groups the same files as the previous example using a combination of the
<filename> selector and the ¡not¿ selector container.

6.2.6 File Mappers

Some tasks take source files and create target files. Depending on the task, it
may be quite obvious which name a target file will have (using javac, you know
there will be .class files for your .java files) - in other cases you may want to
specify the target files, either to help Ant or to get an extra bit of functionality.

While source files are usually specified as filesets, you don’t specify target
files directly - instead, you tell Ant how to find the target file(s) for one source
file. An instance of org.apache.tools.ant.util.FileNameMapper is responsible for
this. It constructs target file names based on rules that can be parameterized
with from and to attributes - the exact meaning of which is implementation-
dependent.

These instances are defined in <mapper> elements with the following at-
tributes:

Attribute Description Required
type specifies one of the built-in implementations. Exactly one of both
classname specifies the implementation by class name. Exactly one of both
classpath the classpath to use when looking up class-

name.
No

classpathref the classpath to use, given as reference to a
path defined elsewhere.

No

from the from attribute for the given implementa-
tion.

Depends on imple-
mentation.

to the to attribute for the given implementation. Depends on imple-
mentation.

Note that Ant will not automatically convert / or \ characters in the to and
from attributes to the correct directory separator of your current platform. If
you need to specify this separator, use ${file.separator} instead.

334 of 389

6.2 Core Types 335

Parameters specified as nested elements

The classpath can be specified via a nested <classpath>, as well - that is, a
path-like structure.

The built-in mapper types are:

identity The target file name is identical to the source file name. Both to and from
will be ignored.

Examples:

<mapper type="identity"/>

Source file name Target file name
A.java A.java
foo/bar/B.java foo/bar/B.java
C.properties C.properties
Classes/dir/dir2/A.properties Classes/dir/dir2/A.properties

flatten The target file name is identical to the source file name, with all leading
directory information stripped off. Both to and from will be ignored.

Examples:

<mapper type="flatten"/>

Source file name Target file name
A.java A.java
foo/bar/B.java B.java
C.properties C.properties
Classes/dir/dir2/A.properties A.properties

merge The target file name will always be the same, as defined by to - from will
be ignored.

Examples:

<mapper type="merge" to="archive.tar"/>

Source file name Target file name
A.java archive.tar
foo/bar/B.java archive.tar
C.properties archive.tar
Classes/dir/dir2/A.properties archive.tar

335 of 389

336 Concepts and Types

glob Both to and from define patterns that may contain at most one *. For
each source file that matches the from pattern, a target file name will be
constructed from the to pattern by substituting the * in the to pattern
with the text that matches the * in the from pattern. Source file names
that don’t match the from pattern will be ignored.

Examples:

<mapper type="glob" from="*.java" to="*.java.bak"/>

Source file name Target file name
A.java A.java.bak
foo/bar/B.java foo/bar/B.java.bak
C.properties ignored
Classes/dir/dir2/A.properties ignored

<mapper type="glob" from="C*ies" to="Q*y"/>

Source file name Target file name
A.java ignored
foo/bar/B.java ignored
C.properties Q.property
Classes/dir/dir2/A.properties Qlasses/dir/dir2/A.property

regexp Both to and from define regular expressions. If the source file name
matches the from pattern, the target file name will be constructed from the
to pattern, using \0 to \9 as back-references for the full match (\0) or the
matches of the subexpressions in parentheses. Source files not matching
the from pattern will be ignored.

Note that you need to escape a dollar-sign ($) with another dollar-sign in
Ant.

The regexp mapper needs a supporting library and an implementation
of org.apache.tools.ant.util.regexp.RegexpMatcher that hides the specifics
of the library. Ant comes with implementations for the java.util.regex
package of JDK 1.4, jakarta-regexp and jakarta-ORO. If you compile from
sources and plan to use one of them, make sure the libraries are in your
CLASSPATH. For information about using gnu.regexp or gnu.rex with
Ant, see this article.

This means, you need optional.jar from the Ant release you are using
and one of the supported regular expression libraries. Make sure, both
will be loaded from the same classpath, that is either put them into your
CLASSPATH, ANT HOME/lib directory or a nested <classpath> element of
the mapper - you cannot have optional.jar in ANT HOME/lib and the library
in a nested ¡classpath¿.

336 of 389

6.2 Core Types 337

Ant will choose the regular-expression library based on the following al-
gorithm:

If the system property ant.regexp.matcherimpl has been set, it is taken
as the name of the class implementing org.apache.tools.ant.util.regexp.RegexpMatcher
that should be used.

If it has not been set, first try the JDK 1.4 classes, then jakarta-ORO and
finally try jakarta-regexp.

Examples:

<mapper type="regexp" from="^(.*)\.java$$" to="\1.java.bak"/>

Source file name Target file name
A.java A. java.bak
foo/bar/B.java foo/bar/B.java.bak
C.properties ignored
Classes/dir/dir2/A.properties ignored

<mapper type="regexp" from="^(.*)/([^/]+)/([^/]*)$$" to="\1/\2/\2-\3"/>

Source file name Target file name
A.java ignored
foo/bar/B.java foo/bar/bar-B.java
C.properties ignored
Classes/dir/dir2/A.properties Classes/dir/dir2/dir2-A.properties

<mapper type="regexp" from="^(.*)\.(.*)$$" to="\2.\1"/>

Source file name Target file name
A.java java.A
foo/bar/B.java java.foo/bar/B
C.properties properties.C
Classes/dir/dir2/A.properties properties.Classes/dir/dir2/A

package
Sharing the same syntax as the glob mapper, the package mapper replaces
directory separators found in the matched source pattern with dots in the target
pattern placeholder. This mapper is particularly useful in combination with
<uptodate> and <junit> output.

Example:

<mapper type="package"
from="*Test.java" to="TEST-*Test.xml"/>

Source file name Target file name
org/apache/tools/ant/util/PackageMapperTest.java TEST-org.apache.tools.ant.util.PackageMapperTest.xml
org/apache/tools/ant/util/Helper.java ignored

337 of 389

338 Concepts and Types

6.2.7 Filter Chains and Filter Readers

Look at Unix pipes - they offer you so much flexibility - say you wanted to copy
just those lines that contained the string blee from the first 10 lines of a file
’foo’ to a file ’bar’ - you would do something like

cat foo|head -n10|grep blee > bar

Ant was not flexible enough. There was no way for the <copy> task to do
something similar. If you wanted the <copy> task to get the first 10 lines, you
would have had to create special attributes:

<copy file="foo" tofile="bar" head="10" contains="blee"/>

The obvious problem thus surfaced: Ant tasks would not be able to acco-
modate such data transformation attributes as they would be endless. The task
would also not know in which order these attributes were to be interpreted.
That is, must the task execute the contains attribute first and then the head
attribute or vice-versa? What Ant tasks needed was a mechanism to allow plug-
gable filter (data tranformer) chains. Ant would provide a few filters for which
there have been repeated requests. Users with special filtering needs would be
able to easily write their own and plug them in.

The solution was to refactor data transformation oriented tasks to sup-
port FilterChains. A FilterChain is a group of ordered FilterReaders. Users
can define their own FilterReaders by just extending the java.io.FilterReader
class. Such custom FilterReaders can be easily plugged in as nested elements of
<filterchain> by using <filterreader> elements.

Example:

<copy file="${src.file}" tofile="${dest.file}">
<filterchain>

<filterreader classname="your.extension.of.java.io.FilterReader">
<param name="foo" value="bar"/>

</filterreader>
<filterreader classname="another.extension.of.java.io.FilterReader">

<classpath>
<pathelement path="${classpath}"/>

</classpath>
<param name="blah" value="blee"/>
<param type="abra" value="cadabra"/>

</filterreader>
</filterchain>

</copy>

Ant provides some built-in filter readers. These filter readers can also be
declared using a syntax similar to the above syntax. However, they can be
declared using some simpler syntax also.

Example:

338 of 389

6.2 Core Types 339

<loadfile srcfile="${src.file}" property="${src.file.head}">
<filterchain>

<headfilter lines="15"/>
</filterchain>

</loadfile>

is equivalent to:

<loadfile srcfile="${src.file}" property="${src.file.head}">
<filterchain>

<filterreader classname="org.apache.tools.ant.filters.HeadFilter">
<param name="lines" value="15"/>

</filterreader>
</filterchain>

</loadfile>

The following built-in tasks support nested <filterchain> elements.

Copy,
LoadFile,
LoadProperties,
Move

A FilterChain is formed by defining zero or more of the following nested el-
ements. FilterReader ClassConstants ExpandProperties HeadFilter LineCon-
tains LineContainsRegExp PrefixLines ReplaceTokens StripJavaComments StripLine-
Breaks StripLineComments TabsToSpaces TailFilter

FilterReader The filterreader element is the generic way to define a filter.
User defined filter elements are defined in the build file using this. Please note
that built in filter readers can also be defined using this syntax. A FilterReader
element must be supplied with a class name as an attribute value. The class re-
solved by this name must extend java.io.FilterReader. If the custom filter reader
needs to be parameterized, it must implement org.apache.tools.type.Parameterizable.
Attribute Description Required classname The class name of the filter reader.
Yes

Nested Elements: <filterreader> supports <classpath> and <param> as
nested elements. Each <param> element may take in the following attributes -
name, type and value.

The following FilterReaders are supplied with the default distribution.
ClassConstants This filters basic constants defined in a Java Class, and out-

puts them in lines composed of the format name=value
Example: This loads the basic constants defined in a Java class as Ant

properties.

<loadproperties srcfile="foo.class">
<filterchain>

<filterreader classname="org.apache.tools.ant.filters.ClassConstants"/>
</filterchain>

</loadproperties>

339 of 389

340 Concepts and Types

Convenience method:

<loadproperties srcfile="foo.class">
<filterchain>

<classconstants/>
</filterchain>

</loadproperties>

ExpandProperties If the data contains data that represents Ant properties (of
the form ${...}), that is substituted with the property’s actual value.

Example: This results in the property modifiedmessage holding the value
”All these moments will be lost in time, like teardrops in the rain”

<echo
message="All these moments will be lost in time, like teardrops in the ${weather}"
file="loadfile1.tmp"
/>

<property name="weather" value="rain" />
<loadfile property="modifiedmessage" srcFile="loadfile1.tmp">

<filterchain>
<filterreader classname="org.apache.tools.ant.filters.ExpandProperties"/>

</filterchain>
</loadfile>

Convenience method:

<echo
message="All these moments will be lost in time, like teardrops in the ${weather}"
file="loadfile1.tmp"
/>

<property name="weather" value="rain" />
<loadfile property="modifiedmessage" srcFile="loadfile1.tmp">

<filterchain>
<expandproperties/>

</filterchain>
</loadfile>

HeadFilter This filter reads the first few lines from the data supplied to it.
Parameter Name Parameter Value Required lines Number of lines to be read.
Defaults to ”10” No

Example:
This stores the first 15 lines of the supplied data in the property ${src.file.head}

<loadfile srcfile="${src.file}" property="${src.file.head}">
<filterchain>

<filterreader classname="org.apache.tools.ant.filters.HeadFilter">
<param name="lines" value="15"/>

</filterreader>
</filterchain>

</loadfile>

340 of 389

6.2 Core Types 341

Convenience method:

<loadfile srcfile="${src.file}" property="${src.file.head}">
<filterchain>

<headfilter lines="15"/>
</filterchain>

</loadfile>

LineContains This filter includes only those lines that contain all the user-
specified strings. Parameter Type Parameter Value Required contains Substring
to be searched for. Yes

Example: This will include only those lines that contain foo and bar.

<filterreader classname="org.apache.tools.ant.filters.LineContains">
<param type="contains" value="foo"/>
<param type="contains" value="bar"/>

</filterreader>

Convenience method:

<linecontains>
<contains value="foo">
<contains value="bar">

</linecontains>

LineContainsRegExp Filter which includes only those lines that contain the
user-specified regular expression matching strings. Parameter Type Parameter
Value Required regexp Pattern of the substring to be searched for. Yes

Example: This will fetch all those lines that contain the pattern foo

<filterreader classname="org.apache.tools.ant.filters.LineContainsRegExp">
<param type="regexp" value="foo*"/>

</filterreader>

Convenience method:

<linecontainsregexp>
<regexp pattern="foo*">

</linecontainsregexp>

PrefixLines Attaches a prefix to every line. Parameter Name Parameter Value
Required prefix Prefix to be attached to lines. Yes

Example: This will attach the prefix Foo to all lines.

<filterreader classname="org.apache.tools.ant.filters.PrefixLines">
<param name="prefix" value="Foo"/>

</filterreader>

Convenience method:

<prefixlines prefix="Foo"/>

341 of 389

342 Concepts and Types

ReplaceTokens This filter reader replaces all strings that are sandwiched between
begintoken and endtoken with user defined values. Parameter Type Parameter
Name Parameter Value Required tokenchar begintoken Character marking the
beginning of a token. Defaults to @ No tokenchar endtoken Character marking
the end of a token. Defaults to @ No token User defined String. User defined
search String Yes

Example: This replaces occurences of the string @DATE@ in the data with
today’s date and stores it in the property ${src.file.replaced}
<tstamp/>
<loadfile srcfile="${src.file}" property="${src.file.replaced}">

<filterchain>
<filterreader classname="org.apache.tools.ant.filters.ReplaceTokens">

<param type="token" name="DATE" value="${TODAY}"/>
</filterreader>

</filterchain>
</loadfile>

Convenience method:

<tstamp/>
<loadfile srcfile="${src.file}" property="${src.file.replaced}">

<filterchain>
<replacetokens>

<token key="DATE" value="${TODAY}"/>
</replacetokens>

</filterchain>
</loadfile>

StripJavaComments This filter reader strips away comments from the data,
using Java syntax guidelines. This filter does not take in any parameters.

Example:

<loadfile srcfile="${java.src.file}" property="${java.src.file.nocomments}">
<filterchain>

<filterreader classname="org.apache.tools.ant.filters.StripJavaComments"/>
</filterchain>

</loadfile>

Convenience method:

<loadfile srcfile="${java.src.file}" property="${java.src.file.nocomments}">
<filterchain>

<stripjavacomments/>
</filterchain>

</loadfile>

StripLineBreaks This filter reader strips away specific characters from the data
supplied to it. Parameter Name Parameter Value Required linebreaks Charac-
ters that are to be stripped out. Defaults to ”\r\n” No

342 of 389

6.2 Core Types 343

Examples: This strips the ’\r’ and ’\n’ characters.

<loadfile srcfile="${src.file}" property="${src.file.contents}">
<filterchain>

<filterreader classname="org.apache.tools.ant.filters.StripLineBreaks"/>
</filterchain>

</loadfile>

Convenience method:

<loadfile srcfile="${src.file}" property="${src.file.contents}">
<filterchain>

<striplinebreaks/>
</filterchain>

</loadfile>

This treats the ’(’ and ’)’ characters as line break characters and strips them.

<loadfile srcfile="${src.file}" property="${src.file.contents}">
<filterchain>

<filterreader classname="org.apache.tools.ant.filters.StripLineBreaks">
<param name="linebreaks" value="()"/>

</filterreader>
</filterchain>

</loadfile>

StripLineComments This filter removes all those lines that begin with strings
that represent comments as specified by the user. Parameter Type Parameter
Value Required comment Strings that identify a line as a comment when they
appear at the start of the line. Yes

Examples: This removes all lines that begin with #, –, REM, rem and //

<filterreader classname="org.apache.tools.ant.filters.StripLineComments">
<param type="comment" value="#"/>
<param type="comment" value="--"/>
<param type="comment" value="REM "/>
<param type="comment" value="rem "/>
<param type="comment" value="//"/>

</filterreader>

Convenience method:

<striplinecomments>
<comment value="#"/>
<comment value="--"/>
<comment value="REM "/>
<comment value="rem "/>
<comment value="//"/>

</striplinecomments>

343 of 389

344 Concepts and Types

TabsToSpaces This filter replaces tabs with spaces Parameter Name Parameter
Value Required lines tablength Defaults to ”8” No

Examples: This replaces tabs in ${src.file} with spaces.

<loadfile srcfile="${src.file}" property="${src.file.notab}">
<filterchain>

<filterreader classname="org.apache.tools.ant.filters.TabsToSpaces"/>
</filterchain>

</loadfile>

Convenience method:

<loadfile srcfile="${src.file}" property="${src.file.notab}">
<filterchain>

<tabstospaces/>
</filterchain>

</loadfile>

TailFilter This filter reads the last few lines from the data supplied to it.
Parameter Name Parameter Value Required lines Number of lines to be read.
Defaults to ”10” No

Examples: This stores the last 15 lines of the supplied data in the property
${src.file.tail}
<loadfile srcfile="${src.file}" property="${src.file.tail}">

<filterchain>
<filterreader classname="org.apache.tools.ant.filters.TailFilter">

<param name="lines" value="15"/>
</filterreader>

</filterchain>
</loadfile>

Convenience method:

<loadfile srcfile="${src.file}" property="${src.file.tail}">
<filterchain>

<tailfilter lines="15"/>
</filterchain>

</loadfile>

This stores the last 5 lines of the first 15 lines of the supplied data in the property
${src.file.mid}
<loadfile srcfile="${src.file}" property="${src.file.mid}">

<filterchain>
<filterreader classname="org.apache.tools.ant.filters.HeadFilter">

<param name="lines" value="15"/>
</filterreader>
<filterreader classname="org.apache.tools.ant.filters.TailFilter">

344 of 389

6.2 Core Types 345

<param name="lines" value="5"/>
</filterreader>

</filterchain>
</loadfile>

Convenience method:

<loadfile srcfile="${src.file}" property="${src.file.mid}">
<filterchain>

<headfilter lines="15"/>
<tailfilter lines="5"/>

</filterchain>
</loadfile>

6.2.8 FilterSet

FilterSets are groups of filters. Filters can be defined as token-value pairs or be
read in from a file. FilterSets can appear inside tasks that support this feature
or at the same level as <target> - i.e., as children of <project>.

FilterSets support the id and refid attributes. You can define a FilterSet
with an id attribute and then refer to that definition from another FilterSet
with a refid attribute. It is also possible to nest filtersets into filtersets to get a
set union of the contained filters.

In addition, FilterSets can specify begintoken and/or endtoken attributes to
define what to match.

Filtersets are used for doing replacements in tasks such as <copy>, etc.
Filterset Attribute Description Default Required begintoken The string mark-

ing the beginning of a token (eg., @DATE@). @ No endtoken The string marking
the end of a token (eg., @DATE@). @ No

Filter Attribute Description Required token The token to replace (eg., @DATE@)
Yes value The value to replace it with (eg., Thursday, April 26, 2001). Yes

Filtersfile Attribute Description Required file A properties file of name-value
pairs from which to load the tokens. Yes

Examples You are copying the version.txt file to the dist directory from the
build directory but wish to replace the token @DATE@ with today’s date.

<copy file="${build.dir}/version.txt" toFile="${dist.dir}/version.txt">
<filterset>

<filter token="DATE" value="${TODAY}"/>
</filterset>

</copy>

You are copying the version.txt file to the dist directory from the build
directory but wish to replace the token

<copy file="${build.dir}/version.txt" toFile="${dist.dir}/version.txt">
<filterset begintoken="%" endtoken="*">

<filter token="DATE" value="${TODAY}"/>

345 of 389

346 Concepts and Types

</filterset>
</copy>

Copy all the docs but change all dates and appropriate notices as stored in a
file.

<copy toDir="${dist.dir}/docs">
<fileset dir="${build.dir}/docs">

<include name="**/*.html">
</fileset>
<filterset begintoken="%" endtoken="*">

<filtersfile file="${user.dir}/dist.properties"/>
</filterset>

</copy>

Define a FilterSet and reference it later.

<filterset id="myFilterSet" begintoken="%" endtoken="*">
<filter token="DATE" value="${TODAY}"/>

</filterset>

<copy file="${build.dir}/version.txt" toFile="${dist.dir}/version.txt">
<filterset refid="myFilterSet"/>

</copy>

6.2.9 PatternSet

Patterns can be grouped to sets and later be referenced by their id attribute.
They are defined via a patternset element, which can appear nested into a File-
Set or a directory-based task that constitutes an implicit FileSet. In addition,
patternsets can be defined as a stand alone element at the same level as target
i.e., as children of project as well as as children of target.

Patterns can be specified by nested <include>, or <exclude> elements or
the following attributes.

Attribute Description includes comma- or space-separated list of patterns of
files that must be included. All files are included when omitted. includesfile the
name of a file; each line of this file is taken to be an include pattern. You can
specify more than one include file by using a nested includesfile elements. ex-
cludes comma- or space-separated list of patterns of files that must be excluded;
no files (except default excludes) are excluded when omitted. excludesfile the
name of a file; each line of this file is taken to be an exclude pattern. You can
specify more than one exclude file by using a nested excludesfile elements.

Parameters specified as nested elements include and exclude Each such ele-
ment defines a single pattern for files to include or exclude.

Attribute Description Required name the pattern to in/exclude. Yes if Only
use this pattern if the named property is set. No unless Only use this pattern
if the named property is not set. No

346 of 389

6.2 Core Types 347

includesfile and excludesfile If you want to list the files to include or exclude
external to your build file, you should use the includesfile/excludesfile attributes
or elements. Using the attribute, you can only specify a single file of each type,
while the nested elements can be specified more than once - the nested elements
also support if/unless attributes you can use to test the existance of a property.

Attribute Description Required name the name of the file holding the pat-
terns to in/exclude. Yes if Only read this file if the named property is set. No
unless Only read this file if the named property is not set. No

patternset Patternsets may be nested within one another, adding the nested
patterns to the parent patternset.

Examples

<patternset id="non.test.sources">
<include name="**/*.java"/>
<exclude name="**/*Test*"/>

</patternset>

Builds a set of patterns that matches all .java files that do not contain the text
Test in their name. This set can be referred to via <patternset refid="non.test.sources"/>,
by tasks that support this feature, or by FileSets.

Note that while the includes and excludes attributes accept multiple elements
separated by commas or spaces, the nested <include> and <exclude> elements
expect their name attribute to hold a single pattern.

The nested elements allow you to use if and unless arguments to specify that
the element should only be used if a property is set, or that it should be used
only if a property is not set.

For example

<patternset id="sources">
<include name="std/**/*.java"/>
<include name="prof/**/*.java" if="professional"/>
<exclude name="**/*Test*"/>

</patternset>

will only include the files in the sub-directory prof if the property professional
is set to some value.

The two sets

<patternset includesfile="some-file"/>

and

<patternset>
<includesfile name="some-file"/>

<patternset/>

are identical. The include patterns will be read from the file some-file, one
pattern per line.

347 of 389

348 Concepts and Types

<patternset>
<includesfile name="some-file"/>
<includesfile name="${some-other-file}"

if="some-other-file"
/>

<patternset/>

will also read include patterns from the file the property some-other-file
points to, if a property of that name has been defined.

6.2.10 Path-like Structures

You can specify PATH- and CLASSPATH-type references using both ”:” and ”;”
as separator characters. Ant will convert the separator to the correct character
of the current operating system.

Wherever path-like values need to be specified, a nested element can be used.
This takes the general form of:

<classpath>
<pathelement path="${classpath}"/>
<pathelement location="lib/helper.jar"/>

</classpath>

The location attribute specifies a single file or directory relative to the project’s
base directory (or an absolute filename), while the path attribute accepts colon-
or semicolon-separated lists of locations. The path attribute is intended to be
used with predefined paths - in any other case, multiple elements with location
attributes should be preferred.

As a shortcut, the <classpath> tag supports path and location attributes
of its own, so:

<classpath>
<pathelement path="${classpath}"/>

</classpath>

can be abbreviated to:

<classpath path="${classpath}"/>

In addition, DirSets, FileSets, and FileLists can be specified via nested <dirset>,
<fileset>, and <filelist> elements, respectively.

Note: The order in which the files building up a FileSet are added to the
path-like structure is not defined.

<classpath>
<pathelement path="${classpath}"/>
<fileset dir="lib">
<include name="**/*.jar"/>

</fileset>

348 of 389

6.2 Core Types 349

<pathelement location="classes"/>
<dirset dir="${build.dir}">

<include name="apps/**/classes"/>
<exclude name="apps/**/*Test*"/>

</dirset>
<filelist refid="third-party_jars">

</classpath>

This builds a path that holds the value of ${classpath}, followed by all jar files
in the lib directory, the classes directory, all directories named classes under the
apps subdirectory of ${build.dir}, except those that have the text Test in their
name, and the files specified in the referenced FileList.

If you want to use the same path-like structure for several tasks, you can
define them with a <path> element at the same level as targets, and reference
them via their id attribute - see References for an example.

A path-like structure can include a reference to another path-like structure
via nested <path> elements:

<path id="base.path">
<pathelement path="${classpath}"/>
<fileset dir="lib">

<include name="**/*.jar"/>
</fileset>
<pathelement location="classes"/>

</path>

<path id="tests.path">
<path refid="base.path"/>
<pathelement location="testclasses"/>

</path>

The shortcuts previously mentioned for ¡classpath¿ are also valid for <path>.
For example:

<path id="base.path">
<pathelement path="${classpath}"/>

</path>

can be written as:

<path id="base.path" path="${classpath}"/>

Command-line Arguments Several tasks take arguments that will be passed to
another process on the command line. To make it easier to specify arguments
that contain space characters, nested arg elements can be used.

Attribute Description Required value a single command-line argument; can
contain space characters. Exactly one of these. file The name of a file as a single
command-line argument; will be replaced with the absolute filename of the file.

349 of 389

350 Concepts and Types

path A string that will be treated as a path-like string as a single command-
line argument; you can use ; or : as path separators and Ant will convert it
to the platform’s local conventions. line a space-delimited list of command-line
arguments.

It is highly recommended to avoid the line version when possible. Ant will
try to split the command line in a way similar to what a (Unix) shell would do,
but may create something that is very different from what you expect under
some circumstances.

Examples

<arg value="-l -a"/>

is a single command-line argument containing a space character.

<arg line="-l -a"/>

represents two separate command-line arguments.

<arg path="/dir;/dir2:\dir3"/>

is a single command-line argument with the value \dir;\dir2;\dir3 on DOS-
based systems and /dir:/dir2:/dir3 on Unix-like systems.

References The id attribute of the buildfile’s elements can be used to refer
to them. This can be useful if you are going to replicate the same snippet of
XML over and over again - using a <classpath> structure more than once, for
example.

The following example:

<project ... >
<target ... >

<rmic ...>
<classpath>
<pathelement location="lib/"/>
<pathelement path="${java.class.path}/"/>
<pathelement path="${additional.path}"/>

</classpath>
</rmic>

</target>

<target ... >
<javac ...>

<classpath>
<pathelement location="lib/"/>
<pathelement path="${java.class.path}/"/>
<pathelement path="${additional.path}"/>

</classpath>
</javac>

</target>
</project>

350 of 389

6.2 Core Types 351

could be rewritten as:

<project ... >
<path id="project.class.path">

<pathelement location="lib/"/>
<pathelement path="${java.class.path}/"/>
<pathelement path="${additional.path}"/>

</path>

<target ... >
<rmic ...>
<classpath refid="project.class.path"/>

</rmic>
</target>

<target ... >
<javac ...>
<classpath refid="project.class.path"/>

</javac>
</target>

</project>

All tasks that use nested elements for PatternSets, FileSets or path-like struc-
tures accept references to these structures as well.

6.2.11 Selectors

Selectors are a mechanism whereby the files that make up a fileset can be se-
lected based on criteria other than filename as provided by the <include> and
<exclude> tags.

How to use a Selector A selector is an element of FileSet, and appears within
it. It can also be defined outside of any target by using the <selector> tag and
then using it as a reference.

Different selectors have different attributes. Some selectors can contain other
selectors, and these are called Selector Containers. There is also a category of
selectors that allow user-defined extensions, called Custom Selectors. The ones
built in to Ant are called Core Selectors.

Core Selectors Core selectors are the ones that come standard with Ant.
They can be used within a fileset and can be contained within Selector Con-
tainers.

The core selectors are:

351 of 389

352 Concepts and Types

<contains> Select files that contain a particular text string
<date> Select files that have been modified either be-

fore or after a particular date and time
<depend> Select files that have been modified more re-

cently than equivalent files elsewhere
<depth> Select files that appear so many directories

down in a directory tree
<filename> Select files whose name matches a particular

pattern. Equivalent to the include and ex-
clude elements of a patternset.

<present> Select files that either do or do not exist in
some other location

<size> Select files that are larger or smaller than a
particular number of bytes.

Contains Selector
The <contains> tag in a FileSet limits the files defined by that fileset to

only those which contain the string specified by the text attribute.
Attribute Description Required text Specifies the text that every file must

contain Yes casesensitive Whether to pay attention to case when looking for the
string in the text attribute. Default is true. No

Here is an example of how to use the Contains Selector:

<fileset dir="${doc.path}" includes="**/*.html">
<contains text="script" casesensitive="no"/>

</fileset>

Selects all the HTML files that contain the string script.
Date Selector The <date> tag in a FileSet will put a limit on the files specified

by the include tag, so that tags whose last modified date does not meet the date
limits specified by the selector will not end up being selected.

Attribute Description Required datetime Specifies the date and time to test
for using a string of the format MM/DD/YYYY HH:MM AM or PM. At least
one of the two. millis The number of milliseconds since 1970 that should be
tested for. It is usually much easier to use the datetime attribute. granular-
ity The number of milliseconds leeway to give before deciding whether a files
modification time matches a date. This is needed because not every file system
supports tracking the last modified time to the millisecond level. The file will
be selected provided the condition could be true were the granularity added or
subtracted from the actual time. Default is 0 milliseconds except on Windows
systems, where it is 2000 milliseconds (2 seconds). No when Indicates how to
interpret the date, whether the files to be selected are those whose last modified
times should be before, after, or equal to the specified value. Acceptable values
for this attribute are: before - select files whose last modified date is before the
indicated date after - select files whose last modified date is after the indicated
date equal - select files whose last modified date is this exact date The default
is equal. No

Here is an example of how to use the Date Selector:

352 of 389

6.2 Core Types 353

<fileset dir="${jar.path}" includes="**/*.jar">
<date datetime="01/01/2001 12:00 AM" when="before"/>

</fileset>

Selects all JAR files which were last modified before midnight January 1, 2001.
Depend Selector The <depend> tag selects files whose last modified date is

later than another, equivalent file in another location.
The <depend> tag supports the use of a contained <mapper> element to

define the location of the file to be compared against. If no <mapper> element
is specified, the identity type mapper is used.

Attribute Description Required
targetdir The base directory to look for the files to compare against. The

precise location depends on a combination of this attribute and the <mapper>
element, if any. Yes

granularity The number of milliseconds leeway to give before deciding a file
is out of date. This is needed because not every file system supports tracking
the last modified time to the millisecond level. Default is 0 milliseconds except
on Windows systems, where it is 2000 milliseconds (2 seconds). No

Here is an example of how to use the Depend Selector:

<fileset dir="${ant.1.5}/src/main" includes="**/*.java">
<depend targetdir="${ant.1.4.1}/src/main"/>

</fileset>

Selects all the Java source files which were modified in the 1.5 release.
Depth Selector
The <depth> tag selects files based on how many directy levels deep they

are in relation to the base directory of the fileset.
Attribute Description Required min The minimum number of directory levels

below the base directory that a file must be in order to be selected. Default
is no limit. At least one of the two. max The maximum number of directory
levels below the base directory that a file can be and still be selected. Default
is no limit.

Here is an example of how to use the Depth Selector:

<fileset dir="${doc.path}" includes="**/*">
<depth max="1"/>

</fileset>

Selects all files in the base directory and one directory below that.
Filename Selector
The <filename> tag acts like the <include> and <exclude> tags within a

fileset. By using a selector instead, however, one can combine it with all the
other selectors using whatever selector container is desired.

Attribute Description Required name The name of files to select. The name
parameter can contain the standard Ant wildcard characters. Yes casesensitive
Whether to pay attention to case when looking at file names. Default is ”true”.

353 of 389

354 Concepts and Types

No negate Whether to reverse the effects of this filename selection, therefore
emulating an exclude rather than include tag. Default is ”false”. No

Here is an example of how to use the Filename Selector:

<fileset dir="${doc.path}" includes="**/*">
<filename name="**/*.css"/>

</fileset>

Selects all the cascading style sheet files.
Present Selector
The <present> tag selects files that have an equivalent file in another direc-

tory tree.
The <present> tag supports the use of a contained <mapper> element to

define the location of the file to be tested against. If no <mapper> element is
specified, the identity type mapper is used.

Attribute Description Required
targetdir The base directory to look for the files to compare against. The

precise location depends on a combination of this attribute and the <mapper>
element, if any. Yes

present Whether we are requiring that a file is present in the src directory
tree only, or in both the src and the target directory tree. Valid values are:
srconly - select files only if they are in the src directory tree but not in the
target directory tree both - select files only if they are present both in the src
and target directory trees Default is both. Setting this attribute to ”srconly” is
equivalent to wrapping the selector in the <not> selector container. No

Here is an example of how to use the Present Selector:

<fileset dir="${ant.1.5}/src/main" includes="**/*.java">
<present present="srconly" targetdir="${ant.1.4.1}/src/main"/>

</fileset>

Selects all the Java source files which are new in the 1.5 release.
Size Selector
The <size> tag in a FileSet will put a limit on the files specified by the

include tag, so that tags which do not meet the size limits specified by the
selector will not end up being selected.

Attribute Description Required value The size of the file which should be
tested for. Yes units The units that the value attribute is expressed in. When
using the standard single letter SI designations, such as ”k”,”M”, or ”G”, multi-
ples of 1000 are used. If you want to use power of 2 units, use the IEC standard:
”Ki” for 1024, ”Mi” for 1048576, and so on. The default is no units, which means
the value attribute expresses the exact number of bytes. No when Indicates how
to interpret the size, whether the files to be selected should be larger, smaller,
or equal to that value. Acceptable values for this attribute are: less - select files
less than the indicated size more - select files greater than the indicated size
equal - select files this exact size The default is equal. No

Here is an example of how to use the Size Selector:

354 of 389

6.2 Core Types 355

<fileset dir="${jar.path}">
<patternset>

<include name="**/*.jar"/>
</patternset>
<size value="4" units="Ki" when="more"/>

</fileset>

Selects all JAR files that are larger than 4096 bytes.
Selector Containers To create more complex selections, a variety of selec-

tors that contain other selectors are available for your use. They combine the
selections of their child selectors in various ways.

The selector containers are:
<and> select a file only if all the contained selectors select

it.
<majority> select a file if a majority of its selectors select it.
<none> select a file only if none of the contained selectors

select it.
<not> can contain only one selector, and reverses what it

selects and doesn’t select.
<or> selects a file if any one of the contained selectors

selects it.
<selector> contains only one selector and forwards all requests

to it without alteration. This is the selector to use
if you want to define a reference. It is usable as an
element of <project>.

All selector containers can contain any other selector, including other con-
tainers, as an element. Using containers, the selector tags can be arbitrarily
deep. Here is a complete list of allowable selector elements within a container:

<and>
<contains>
<custom>
<date>
<depend>
<depth>
<filename>
<majority>
<none>
<not>
<or>
<present>
<selector>
<size>

And Selector The <and> tag selects files that are selected by all of the elements
it contains. It returns as soon as it finds a selector that does not select the file,
so it is not guaranteed to check every selector.

355 of 389

356 Concepts and Types

Here is an example of how to use the And Selector:

<fileset dir="${dist}" includes="**/*.jar">
<and>

<size value="4" units="Ki" when="more"/>
<date datetime="01/01/2001 12:00 AM" when="before"/>

</and>
</fileset>

Selects all the JAR file larger than 4096 bytes which haven’t been update since
the last millenium.

Majority Selector The <majority> tag selects files provided that a majority
of the contained elements also select it. Ties are dealt with as specified by the
allowtie attribute.

Attribute Description Required allowtie Whether files should be selected if
there are an even number of selectors selecting them as are not selecting them.
Default is true. No

Here is an example of how to use the Majority Selector:

<fileset dir="${docs}" includes="**/*.html">
<majority>

<contains text="project" casesensitive="false"/>
<contains text="taskdef" casesensitive="false"/>
<contains text="IntrospectionHelper" casesensitive="true"/>

</majority>
</fileset>

Selects all the HTML files which contain at least two of the three phrases
”project”, ”taskdef”, and ”IntrospectionHelper” (this last phrase must match
case exactly).

None Selector
The <none> tag selects files that are not selected by any of the elements it

contains. It returns as soon as it finds a selector that selects the file, so it is not
guaranteed to check every selector.

Here is an example of how to use the None Selector:

<fileset dir="${src}" includes="**/*.java">
<none>

<present targetdir="${dest}"/>
<present targetdir="${dest}">

<mapper type="glob" from="*.java" to="*.class"/>
</present>

</none>
</fileset>

Selects only Java files which do not have equivalent java or class files in the dest
directory.

356 of 389

6.2 Core Types 357

Not Selector The <not> tag reverses the meaning of the single selector it
contains.

Here is an example of how to use the Not Selector:

<fileset dir="${src}" includes="**/*.java">
<not>

<contains text="test"/>
</not>

</fileset>

Selects all the files in the src directory that do not contain the string ”test”.
Or Selector
The <or> tag selects files that are selected by any one of the elements it

contains. It returns as soon as it finds a selector that selects the file, so it is not
guaranteed to check every selector.

Here is an example of how to use the Or Selector:

<fileset dir="${basedir}">
<or>

<depth max="0"/>
<filename name="*.png"/>
<filename name="*.gif"/>
<filename name="*.jpg"/>

</or>
</fileset>

Selects all the files in the top directory along with all the image files below
it.

Selector Reference
The <selector> tag is used to create selectors that can be reused through

references. It is the only selector which can be used outside of any target, as
an element of the <project> tag. It can contain only one other selector, but of
course that selector can be a container.

Here is an example of how to use the Selector Reference:

<project default="all" basedir="./ant">

<selector id="completed">
<none>

<depend targetdir="build/classes">
<mapper type="glob" from="*.java" to="*.class"/>

</depend>
<depend targetdir="docs/manual/api">

<mapper type="glob" from="*.java" to="*.html"/>
</depend>

</none>
</selector>

357 of 389

358 Concepts and Types

<target>
<zip>

<fileset dir="src/main" includes="**/*.java">
<selector refid="completed"/>

</fileset>
</zip>

</target>

</project>

Zips up all the Java files which have an up-to-date equivalent class file and
javadoc file associated with them.

Custom Selectors
You can write your own selectors and use them within the selector containers

by specifying them within the ¡custom¿ tag.
First, you have to write your selector class in Java. The only requirement it

must meet in order to be a selector is that it implements the
org.apache.tools.ant.types.selectors.FileSelector interface, which con-
tains a single method. See Programming Selectors in Ant for more information.

Once that is written, you include it in your build file by using the <custom>
tag.

Attribute Description Required classname The name of your class that imple-
ments org.apache.tools.ant.types.selectors.FileSelector. Yes classpath The class-
path to use in order to load the custom selector class. If neither this classpath
nor the classpathref are specified, the class will be loaded from the classpath
that Ant uses. No classpathref A reference to a classpath previously defined.
If neither this reference nor the classpath above are specified, the class will be
loaded from the classpath that Ant uses. No

Here is how you use <custom> to use your class as a selector:

<fileset dir="${mydir}" includes="**/*">
<custom classname="com.mydomain.MySelector">

<param name="myattribute" value="myvalue"/>
</custom>

</fileset>

A number of core selectors can also be used as custom selectors by specifying
their attributes using <param> elements. These are

Contains Selector with classname org.apache.tools.ant.types.selectors.ContainsSelector
Date Selector with classname org.apache.tools.ant.types.selectors.DateSelector
Depth Selector with classname org.apache.tools.ant.types.selectors.DepthSelector
Filename Selector with classname org.apache.tools.ant.types.selectors.FilenameSelector
Size Selector with classname org.apache.tools.ant.types.selectors.SizeSelector

Here is the example from the Depth Selector section rewritten to use the
selector through <custom>.

<fileset dir="${doc.path}" includes="**/*">

358 of 389

6.2 Core Types 359

<custom classname="org.apache.tools.ant.types.selectors.DepthSelector">
<param name="max" value="1"/>

</custom>
</fileset>

Selects all files in the base directory and one directory below that.
For more details concerning writing your own selectors, consult Program-

ming Selectors in Ant.

6.2.12 XMLCatalog

An XMLCatalog is a catalog of public resources such as DTDs or entities that
are referenced in an XML document. Catalogs are typically used to make web
references to resources point to a locally cached copy of the resource.

This allows the XML Parser, XSLT Processor or other consumer of XML
documents to efficiently allow a local substitution for a resource available on the
web.

This data type provides a catalog of resource locations based on the OASIS
”Open Catalog” standard. The catalog entries are used both for Entity reso-
lution and URI resolution, in accordance with the org.xml.sax.EntityResolver
and javax.xml.transform.URIResolver interfaces as defined in the Java API for
XML Processing (JAXP) Specification.

For example, in a web.xml file, the DTD is referenced as:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

The XML processor, without XMLCatalog support, would need to retrieve
the DTD from the URL specified whenever validation of the document was
required.

This can be very time consuming during the build process, especially where
network throughput is limited. Alternatively, you can do the following:

Copy web-app 2 2.dtd onto your local disk somewhere (either in the filesys-
tem or even embedded inside a jar or zip file on the classpath).

Create an <xmlcatalog> with a <dtd> element whose location attribute
points to the file.

Success! The XML processor will now use the local copy instead of calling
out to the internet.

XMLCatalogs can appear inside tasks that support this feature or at the
same level as target - i.e., as children of project for reuse across different tasks,
e.g. XML Validation and XSLT Transformation. The XML Validate task uses
XMLCatalogs for entity resolution. The XSLT Transformation task uses XML-
Catalogs for both entity and URI resolution.

XMLCatalogs are specified as either a reference to another XMLCatalog,
defined previously in a build file, or as a list of dtd or entity locations. A sepa-
rate classpath for entity resolution may be specified inline via nested classpath
elements; otherwise the system classpath is used for this as well.

359 of 389

360 Concepts and Types

XMLCatalogs can also be nested inside other XMLCatalogs. For example,
a ”superset” XMLCatalog could be made by including several nested XMLCat-
alogs that referred to other, previously defined XMLCatalogs.

Currently, only <dtd> and <entity> elements may be specified inline; these
roughly correspond to OASIS catalog entry types PUBLIC and URI respectively.

Entity/DTD/URI Resolution Algorithm When an entity, DTD, or URI is
looked up by the XML processor, the XMLCatalog searches its list of entries
to see if any match. That is, it attempts to match the publicId attribute of
each entry with the PublicID or URI of the entity to be resolved. Assuming
a matching entry is found, XMLCatalog then executes the following steps: 1.
Filesystem lookup The location is first looked up in the filesystem. If the location
is a relative path, the ant project basedir attribute is used as the base directory.
If the location specifies an absolute path, it is used as is. Once we have an
absolute path in hand, we check to see if a valid and readable file exists at that
path. If so, we are done. If not, we proceed to the next step.

2. Classpath lookup The location is next looked up in the classpath. Re-
call that jar files are merely fancy zip files. For classpath lookup, the loca-
tion is used as is (no base is prepended). We use a Classloader to attempt to
load the resource from the classpath. For example, if hello.jar is in the class-
path and it contains foo/bar/blat.dtd it will resolve an entity whose location
is foo/bar/blat.dtd. Of course, it will not resolve an entity whose location is
blat.dtd.

3. URL-space lookup Finally, we attempt to make a URL out of the location.
At first this may seem like this would defeat the purpose of XMLCatalogs –
why go back out to the internet? But in fact, this can be used to (in a sense)
implement HTTP redirects, substituting one URL for another. The mapped-
to URL might also be served by a local web server. If the URL resolves to a
valid and readable resource, we are done. Otherwise, we give up. In this case,
the XML processor will perform its normal resolution algorithm. Depending on
the processor configuration, further resolution failures may or may not result in
fatal (i.e. build-ending) errors.

XMLCatalog attributes Attribute Description Required id a unique name for
an XMLCatalog, used for referencing the XMLCatalog’s contents from another
XMLCatalog No refid the id of another XMLCatalog whose contents you would
like to be used for this XMLCatalog No

XMLCatalog nested elements dtd/entity The dtd and entity elements used
to specify XMLCatalogs are identical in their structure

Attribute Description Required publicId The public identifier used when
defining a dtd or entity, e.g. ”-//Sun Microsystems, Inc.//DTD Web Applica-
tion 2.2//EN” Yes location The location of the local replacement to be used
for the public identifier specified. This may be specified as a file name, re-
source name found on the classpath, or a URL. Relative paths will be resolved
according to the base, which by default is the Ant project basedir. Yes

classpath
The classpath to use for entity resolution. The nested <classpath> is a

path-like structure.

360 of 389

6.2 Core Types 361

Examples
Set up an XMLCatalog with a single dtd referenced locally in a user’s home

directory:

<xmlcatalog>
<dtd

publicId="-//OASIS//DTD DocBook XML V4.1.2//EN"
location="/home/dion/downloads/docbook/docbookx.dtd"/>

</xmlcatalog>

Set up an XMLCatalog with a multiple dtds to be found either in the filesystem
(relative to the Ant project basedir) or in the classpath:

<xmlcatalog id="commonDTDs">
<dtd

publicId="-//OASIS//DTD DocBook XML V4.1.2//EN"
location="docbook/docbookx.dtd"/>

<dtd
publicId="-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
location="web-app_2_2.dtd"/>

</xmlcatalog>

Set up an XMLCatalog with a combination of DTDs and entities as well as a
nested XMLCatalog:

<xmlcatalog id="allcatalogs">
<dtd

publicId="-//ArielPartners//DTD XML Article V1.0//EN"
location="com/arielpartners/knowledgebase/dtd/article.dtd"/>

<entity
publicId="LargeLogo"
location="com/arielpartners/images/ariel-logo-large.gif"/>

<xmlcatalog refid="commonDTDs"/>
</xmlcatalog>

To reference the above XMLCatalog in an xslt task:

<xslt basedir="${source.doc}"
destdir="${dest.xdocs}"
extension=".xml"
style="${source.xsl.converter.docbook}"
includes="**/*.xml"
force="true">

<xmlcatalog refid="allcatalogs"/>
</xslt>

361 of 389

362 Concepts and Types

6.3 Optional Types

6.3.1 ClassFileSet

A classfileset is a specialised type of fileset which, given a set of ”root” classes,
will include all of the class files upon which the root classes depend. This is
typically used to create a jar with all of the required classes for a particular
application.

classfilesets are typically used by reference. They are declared with an ”id”
value and this is then used as a reference where a normal fileset is expected.

This type requires the jakarta-BCEL library.
Attributes The class fileset support the following attributes in addition to

those supported by the standard fileset:
Attribute Description Required rootclass A single root class name No
Nested Elements Root
When more than one root class is required, multiple nested <root> elements

may be used
Attribute Description Required classname The fully qualified name of the

root class Yes
RootFileSet
A root fileset is used to add a set of root classes from a fileset. In this case

the entries in the fileset are expected to be Java class files. The name of the
Java class is determined by the relative location of the classfile in the fileset.
So, the file org/apache/tools/ant/Project.class corresponds to the Java class
org.apache.tools.ant.Project.

Examples

<classfileset id="reqdClasses" dir="${classes.dir}">
<root classname="org.apache.tools.ant.Project" />

</classfileset>

This example creates a fileset containing all the class files upon which the
org.apache.tools.ant.Project class depends. This fileset could then be used to
create a jar.

<jar destfile="minimal.jar">
<fileset refid="reqdClasses"/>

</jar>

<classfileset id="reqdClasses" dir="${classes.dir}">
<rootfileset dir="${classes.dir}" includes="org/apache/tools/ant/Project*.class"/>

</classfileset>

This example constructs the classfileset using all the class with names start-
ing with Project in the org.apache.tools.ant package

362 of 389

6.3 Optional Types 363

6.3.2 Extension Package

Utility type that represents either an available ”Optional Package” (formerly
known as ”Standard Extension”) as described in the manifest of a JAR file, or
the requirement for such an optional package.

Note that this type works with extensions as defined by the ”Optional Pack-
age” specification. For more information about optional packages, see the docu-
ment Optional Package Versioning in the documentation bundle for your Java2
Standard Edition package, in file guide/extensions/versioning.html or online at
http://java.sun.com/j2se/1.3/docs/guide/extensions/versioning.html.

Attributes The extension type supports the following attributes:
Attribute Description Required extensionName The name of extension yes

specificationVersion The version of extension specification (Must be in dewey
decimal aka dotted decimal notation. 3.2.4) no specificationVendor The speci-
fication vendor no implementationVersion The version of extension implemen-
tation (Must be in dewey decimal aka dotted decimal notation. 3.2.4) no im-
plementationVendor The implementation vendor no implementationVendorId
The implementation vendor ID no implementationURL The url from which to
retrieve extension. no

Examples

<extension id="e1"
extensionName="MyExtensions"
specificationVersion="1.0"
specificationVendor="Peter Donald"
implementationVendorID="vv"
implementationVendor="Apache"
implementationVersion="2.0"
implementationURL="http://somewhere.com/myExt.jar"/>

Fully specifiec extension object.

<extension id="e1"
extensionName="MyExtensions"
specificationVersion="1.0"
specificationVendor="Peter Donald"/>

Extension object that just species the specification details.

6.3.3 Set of Extension Packages

Utility type that represents a set of Extensions.
Note that this type works with extensions as defined by the ”Optional Pack-

age” specification. For more information about optional packages, see the docu-
ment Optional Package Versioning in the documentation bundle for your Java2
Standard Edition package, in file guide/extensions/versioning.html or online at
http://java.sun.com/j2se/1.3/docs/guide/extensions/versioning.html.

Nested Elements extension Extension object to add to set.

363 of 389

364 Concepts and Types

fileset FileSets all files contained contained within set that are jars and im-
plement an extension are added to extension set.

LibFileSet All files contained contained within set that are jars and imple-
ment an extension are added to extension set. However the extension informa-
tion may be modified by attributes of libfileset

Examples

<extension id="e1"
extensionName="MyExtensions"
specificationVersion="1.0"
specificationVendor="Peter Donald"
implementationVendorID="vv"
implementationVendor="Apache"
implementationVersion="2.0"
implementationURL="http://somewhere.com/myExt.jar"/>

<libfileset id="lfs"
includeUrl="true"
includeImpl="false"
dir="tools/lib">

<include name="*.jar"/>
</libfileset>

<extensionSet id="exts">
<libfileset dir="lib">

<include name="*.jar"/>
</libfileset>
<libfileset refid="lfs"/>
<extension refid="e1"/>

</extensionSet>

364 of 389

Chapter 7

Loggers and Listeners

7.1 Overview

Ant has two related features to allow the build process to be monitored: listeners
and loggers.

Listeners A listener is alerted of the following events:
build started build finished target started target finished task started task

finished message logged Loggers Loggers extend the capabilities of listeners and
add the following features:

Receives a handle to the standard output and error print streams and there-
fore can log information to the console or the -logfile specified file. Logging level
(-quiet, -verbose, -debug) aware Emacs-mode aware Built-in Listeners/Loggers
Classname Description Type org.apache.tools.ant.DefaultLogger The logger used
implicitly unless overridden with the -logger command-line switch. BuildLogger
org.apache.tools.ant.NoBannerLogger This logger omits output of empty target
output. BuildLogger org.apache.tools.ant.listener.MailLogger Extends Default-
Logger such that output is still generated the same, and when the build is fin-
ished an e-mail can be sent. BuildLogger org.apache.tools.ant.listener.AnsiColorLogger
Colorifies the build output. BuildLogger org.apache.tools.ant.listener.Log4jListener
Passes events to Log4j for highly customizable logging. BuildListener org.apache.tools.ant.XmlLogger
Writes the build information to an XML file. BuildLogger

DefaultLogger Simply run Ant normally, or:
ant -logger org.apache.tools.ant.DefaultLogger
NoBannerLogger Removes output of empty target output.
ant -logger org.apache.tools.ant.NoBannerLogger
MailLogger The MailLogger captures all output logged through DefaultLog-

ger (standard Ant output) and will send success and failure messages to unique
e-mail lists, with control for turning off success or failure messages individually.

Properties controlling the operation of MailLogger:
Property Description Required MailLogger.mailhost Mail server to use No,

default ”localhost” MailLogger.from Mail ”from” address Yes, if mail needs

365 of 389

366 Loggers and Listeners

to be sent MailLogger.failure.notify Send build failure e-mails? No, default
”true” MailLogger.success.notify Send build success e-mails? No, default ”true”
MailLogger.failure.to Address(es) to send failure messages to, comma-separated
Yes, if failure mail is to be sent MailLogger.success.to Address(es) to send suc-
cess messages to, comma-separated Yes, if success mail is to be sent MailLog-
ger.failure.subject Subject of failed build No, default ”Build Failure” MailLog-
ger.success.subject Subject of successful build No, default ”Build Success” Mail-
Logger.properties.file Filename of properties file that will override other values.
No

ant -logger org.apache.tools.ant.listener.MailLogger
AnsiColorLogger The AnsiColorLogger adds color to the standard Ant out-

put by prefixing and suffixing ANSI color code escape sequences to it. It is just
an extension of DefaultLogger and hence provides all features that DefaultLog-
ger does.

AnsiColorLogger differentiates the output by assigning different colors de-
pending upon the type of the message.

If used with the -logfile option, the output file will contain all the necessary
escape codes to display the text in colorized mode when displayed in the console
using applications like cat, more, etc.

This is designed to work on terminals that support ANSI color codes. It
works on XTerm, ETerm, Win9x Console (with ANSI.SYS loaded.), etc.

NOTE: It doesn’t work on WinNT even when a COMMAND.COM console
loaded with ANSI.SYS is used.

If the user wishes to override the default colors with custom ones, a file
containing zero or more of the custom color key-value pairs must be created.
The recognized keys and their default values are shown below:

AnsiColorLogger.ERROR_COLOR=2;31
AnsiColorLogger.WARNING_COLOR=2;35
AnsiColorLogger.INFO_COLOR=2;36
AnsiColorLogger.VERBOSE_COLOR=2;32
AnsiColorLogger.DEBUG_COLOR=2;34

Each key takes as value a color combination defined as Attribute;Foreground;Background.
In the above example, background value has not been used.

This file must be specfied as the value of a system variable named ant.logger.defaults
and passed as an argument using the -D option to the java command that invokes
the Ant application. An easy way to achieve this is to add -Dant.logger.defaults=
/path/to/your/file to the ANT OPTS environment variable. Ant’s launching script
recognizes this flag and will pass it to the java command appropriately.

Format:

AnsiColorLogger.*=Attribute;Foreground;Background

Attribute is one of the following:

0 -> Reset All Attributes (return to normal mode)
1 -> Bright (Usually turns on BOLD)

366 of 389

7.1 Overview 367

2 -> Dim
3 -> Underline
5 -> link
7 -> Reverse
8 -> Hidden

Foreground is one of the following:

30 -> Black
31 -> Red
32 -> Green
33 -> Yellow
34 -> Blue
35 -> Magenta
36 -> Cyan
37 -> White

Background is one of the following:

40 -> Black
41 -> Red
42 -> Green
43 -> Yellow
44 -> Blue
45 -> Magenta
46 -> Cyan
47 -> White
ant -logger org.apache.tools.ant.listener.AnsiColorLogger

Log4jListener Passes build events to Log4j, using the full classname’s of the
generator of each build event as the category:

build started / build finished - org.apache.tools.ant.Project target started /
target finished - org.apache.tools.ant.Target task started / task finished - the
fully qualified classname of the task message logged - the classname of one of
the above, so if a task logs a message, its classname is the category used, and so
on. All start events are logged as INFO. Finish events are either logged as INFO
or ERROR depending on whether the build failed during that stage. Message
events are logged according to their Ant logging level, mapping directly to a
corresponding Log4j level.

ant -listener org.apache.tools.ant.listener.Log4jListener
XmlLogger Writes all build information out to an XML file named log.xml,

or the value of the XmlLogger.file property if present, when used as a listener.
When used as a logger, it writes all output to either the console or to the value
of -logfile. Whether used as a listener or logger, the output is not generated
until the build is complete, as it buffers the information in order to provide
timing information for task, targets, and the project.

By default the XML file creates a reference to an XSLT file ”log.xsl” in
the current directory; look in ANT HOME/etc for one of these. You can set the

367 of 389

368 Loggers and Listeners

property ant.XmlLogger.stylesheet.uri to provide a uri to a style sheet. this can
be a relative or absolute file path, or an http URL. If you set the property to
the empty string, ””, no XSLT transform is declared at all.

ant -listener org.apache.tools.ant.XmlLogger ant -logger org.apache.tools.ant.XmlLogger
-verbose -logfile build log.xml

Writing your own See the Build Events section for developers.
Notes:
A listener or logger should not write to standard output or error - Ant

captures these internally and may cause an infinite loop.

368 of 389

Chapter 8

Editor/IDE Integration

All the modern Java IDEs support Ant almost out the box, with the notable
exception of JBuilder Personal.

8.1 Antidote

Version 0.1 (2001/02/13)
Authors: Simeon H.K. Fitch

8.1.1 Overview

Antidote is the Ant subproject for developing a graphical user interface to fa-
cilitate the efficient use of Ant. In general, its purpose is to allow the quick
generation, modification, and use of Ant build files, helping the user define a
build process and track down build problems. It is not meant to be an IDE,
but an enabler for the powerful features available in Ant, particularly for novice
users, or users who want a rapid way of controlling their build process.

Status Antidote is still in the early stages of development, but does have a
set of usable features, including:

Reading Ant build files. Selecting targets and executing them. Context
highlighted build status console. Modification of (some) build file components.
Saving modified build file. Current development tasks include:

A more complete set of target and task editing capabilities. A wizard for
creating basic build files, including importing existing code bases. Better build
progress monitoring. The Antidote source distribution comes with requirements
and design documentation that better cover the details of application architec-
ture, how to develop against it, and what the long term goals are. Furthermore,
there is a TODO file listing the detailed, near-term tasks that need accomplish-
ing.

Getting Involved The source code for Antidote is located in a separate Mod-
ule (ant-antidote) in CVS. All the existing documentation can be found there

369 of 389

370 Editor/IDE Integration

where new contributors should read:
Design Overview Feature List Idea Refinement New Module HOWTO Static

Class Diagrams Online discussions about Antidote occur on the Ant developer
mailing list. The application infrastructure is fairly complete, but there are
almost unlimited opportunities for feature contributions.

Aspiring contributors new to the project should (carefully) read the following
for details on the contribution process:

Get Involved Project Guidelines Source Repositories (how to contribute
patches)

8.2 AntRunner for JBuilder

Documentation may be found at http://antrunner.sourceforge.net/

8.3 AntWork Plugin for the Jext - Java Text
Editor

by

Klaus Hartlage (KHartlage@t-online.de)
Version $Revision: 1.3.2.1 $ - $Date: 2002/09/03 15:27:58 $

You can download the plugin at: ftp://jext.sourceforge.net/pub/jext/plugins/AntWork.zip
Installation instructions from the Readme.txt: You have to enable the Jext

Console to see the Ant output (menu: Edit-¿Options... - General Panel), be-
cause the Ant messages are redirected to the Jext console.

You can configure the Ant call in the Jext menu: Edit-¿Options... - Plugin
Options - Antwork Plugin Panel; here you can set the ant home directory and
the path to your build file.

You can start AntWork in the menu: Plugins-¿Ant-¿Work Now! In the
appearing dialog box you can enter the target which you want to compile.

If a javac error occurs in the ant run an error-list opens within Jext. With
a double-click on the error-message you jump to the error in the specified java
text file.

8.4 Emacs

Emacs JDE has built-in text ANT integration: selection of target through text
field, execution, hyperlink to compilation errors. Installation: built-in JDE 2.2.8
or later. Configuration: through customize menu ”Jde Build Function”

370 of 389

8.5 IDEA 371

8.5 IDEA

IDEA has built-in GUI ANT integration: GUI selection of targets, execution,
hyperlink to compilation errors

NetBeans NetBeans 3.4 has very good Ant integration indeed.
jEdit jEdit is an open source java IDE with some great plugins for Java dev,

a good XML editor and the Antfarm plugin to execute targets in a build file.
Eclipse Eclipse is IBM’s counterpoint to NetBeans; an open source IDE with

Java and ant support.
VisualAge for Java
WebSphere Studio Application Developer

371 of 389

372 Editor/IDE Integration

372 of 389

Chapter 9

Developing with Ant

9.1 Writing Your Own Task

It is very easy to write your own task:
Create a Java class that extends org.apache.tools.ant.Task or another class

that was desgined to be extended. For each attribute, write a setter method.
The setter method must be a public void method that takes a single argument.
The name of the method must begin with set, followed by the attribute name,
with the first character of the name in uppercase, and the rest in lowercase. That
is, to support an attribute named file you create a method setFile. Depending
on the type of the argument, Ant will perform some conversions for you, see
below. If your task shall contain other tasks as nested elements (like parallel),
your class must implement the interface org.apache.tools.ant.TaskContainer. If
you do so, your task can not support any other nested elements. See below.
If the task should support character data (text nested between the start end
end tags), write a public void addText(String) method. Note that Ant does not
expand properties on the text it passes to the task. For each nested element,
write a create, add or addConfigured method. A create method must be a public
method that takes no arguments and returns an Object type. The name of the
create method must begin with create, followed by the element name. An add
(or addConfigured) method must be a public void method that takes a single
argument of an Object type with a no-argument constructor. The name of the
add (addConfigured) method must begin with add (addConfigured), followed
by the element name. For a more complete discussion see below. Write a public
void execute method, with no arguments, that throws a BuildException. This
method implements the task itself. The Life-cycle of a Task The task gets
instantiated using a no-argument constructor, at parser time. This means even
tasks that are never executed get instantiated. The task gets references to its
project and location inside the buildfile via its inherited project and location
variables. If the user specified an id attribute to this task, the project registers a
reference to this newly created task, at parser time. The task gets a reference to

373 of 389

374 Developing with Ant

the target it belongs to via its inherited target variable. init() is called at parser
time. All child elements of the XML element corresponding to this task are
created via this task’s createXXX() methods or instantiated and added to this
task via its addXXX() methods, at parser time. All attributes of this task get
set via their corresponding setXXX methods, at runtime. The content character
data sections inside the XML element corresponding to this task is added to the
task via its addText method, at runtime. All attributes of all child elements
get set via their corresponding setXXX methods, at runtime. execute() is called
at runtime. While the above initialization steps only occur once, the execute()
method may be called more than once, if the task is invoked more than once.
For example, if target1 and target2 both depend on target3, then running ’ant
target1 target2’ will run all tasks in target3 twice. Conversions Ant will perform
for attributes Ant will always expand properties before it passes the value of an
attribute to the corresponding setter method.

The most common way to write an attribute setter is to use a java.lang.String
argument. In this case Ant will pass the literal value (after property expansion)
to your task. But there is more! If the argument of you setter method is

boolean, your method will be passed the value true if the value speci-
fied in the build file is one of true, yes, or on and false otherwise. char or
java.lang.Character, your method will be passed the first character of the value
specified in the build file. any other primitive type (int, short and so on), Ant
will convert the value of the attribute into this type, thus making sure that
you’ll never receive input that is not a number for that attribute. java.io.File,
Ant will first determine whether the value given in the build file represents
an absolute path name. If not, Ant will interpret the value as a path name
relative to the project’s basedir. org.apache.tools.ant.types.Path, Ant will tok-
enize the value specified in the build file, accepting : and ; as path separators.
Relative path names will be interpreted as relative to the project’s basedir.
java.lang.Class, Ant will interpret the value given in the build file as a Java
class name and load the named class from the system class loader. any other
type that has a constructor with a single String argument, Ant will use this
constructor to create a new instance from the value given in the build file.
A subclass of org.apache.tools.ant.types.EnumeratedAttribute, Ant will invoke
this classes setValue method. Use this if your task should support enumer-
ated attributes (attributes with values that must be part of a predefined set of
values). See org/apache/tools/ant/taskdefs/FixCRLF.java and the inner Ad-
dAsisRemove class used in setCr for an example. What happens if more than
one setter method is present for a given attribute? A method taking a String
argument will always lose against the more specific methods. If there are still
more setters Ant could chose from, only one of them will be called, but we don’t
know which, this depends on the implementation of your Java virtual machine.

Supporting nested elements Let’s assume your task shall support nested
elements with the name inner. First of all, you need a class that represents
this nested element. Often you simply want to use one of Ant’s classes like
org.apache.tools.ant.types.FileSet to support nested fileset elements.

Attributes of the nested elements or nested child elements of them will be

374 of 389

9.1 Writing Your Own Task 375

handled using the same mechanism used for tasks (i.e. setter methods for at-
tributes, addText for nested text and create/add/addConfigured methods for
child elements).

Now you have a class NestedElement that is supposed to be used for your
nested <inner> elements, you have three options:

public NestedElement createInner() public void addInner(NestedElement
anInner) public void addConfiguredInner(NestedElement anInner) What is the
difference?

Option 1 makes the task create the instance of NestedElement, there are no
restrictions on the type. For the options 2 and 3, Ant has to create an instance
of NestedInner before it can pass it to the task, this means, NestedInner must
have a public no-arg constructor. This is the only difference between options 1
and 2.

The difference between 2 and 3 is what Ant has done to the object before
it passes it to the method. addInner will receive an object directly after the
constructor has been called, while addConfiguredInner gets the object after the
attributes and nested children for this new object have been handled.

What happens if you use more than one of the options? Only one of the
methods will be called, but we don’t know which, this depends on the imple-
mentation of your Java virtual machine.

TaskContainer The TaskContainer consists of a single method, addTask that
basically is the same as an add method for nested elements. The task instances
will be configured (their attributes and nested elements have been handled)
when your task’s execute method gets invoked, but not before that.

When we said execute would be called, we lied ;-). In fact, Ant will call
the perform method in org.apache.tools.ant.Task, which in turn calls execute.
This method makes sure that Build Events will be triggered. If you execute the
task instances nested into your task, you should also invoke perform on these
instances instead of execute.

Example
Let’s write our own task, which prints a message on the System.out stream.

The task has one attribute, called message.

package com.mydomain;

import org.apache.tools.ant.BuildException;
import org.apache.tools.ant.Task;

public class MyVeryOwnTask extends Task {
private String msg;

// The method executing the task
public void execute() throws BuildException {

System.out.println(msg);
}

375 of 389

376 Developing with Ant

// The setter for the "message" attribute
public void setMessage(String msg) {

this.msg = msg;
}

}

It’s really this simple ;-)
Adding your task to the system is rather simple too:
Make sure the class that implements your task is in the classpath when

starting Ant.
Add a <taskdef> element to your project. This actually adds your task to

the system.
Use your task in the rest of the buildfile. Example

<?xml version="1.0"?>

<project name="OwnTaskExample" default="main" basedir=".">
<taskdef name="mytask" classname="com.mydomain.MyVeryOwnTask"/>

<target name="main">
<mytask message="Hello World! MyVeryOwnTask works!"/>

</target>
</project>

Example 2
To use a task directly from the buildfile which created it, place the <taskdef>

declaration inside a target after the compilation. Use the classpath attribute of
<taskdef> to point to where the code has just been compiled.

<?xml version="1.0"?>

<project name="OwnTaskExample2" default="main" basedir=".">

<target name="build" >
<mkdir dir="build"/>
<javac srcdir="source" destdir="build"/>

</target>

<target name="declare" depends="build">
<taskdef name="mytask"

classname="com.mydomain.MyVeryOwnTask"
classpath="build"/>

</target>

<target name="main" depends="declare">
<mytask message="Hello World! MyVeryOwnTask works!"/>

</target>
</project>

376 of 389

9.2 Tasks Desgined for Extension 377

Another way to add a task (more permanently), is to add the task name and im-
plementing class name to the default.properties file in the org.apache.tools.ant.taskdefs
package. Then you can use it as if it were a built-in task.

Build Events
Ant is capable of generating build events as it performs the tasks necessary

to build a project. Listeners can be attached to Ant to receive these events. This
capability could be used, for example, to connect Ant to a GUI or to integrate
Ant with an IDE.

To use build events you need to create an ant Project object. You can then
call the addBuildListener method to add your listener to the project. Your
listener must implement the org.apache.tools.antBuildListener interface. The
listener will receive BuildEvents for the following events

Build started Build finished Target started Target finished Task started Task
finished Message logged If you wish to attach a listener from the command line
you may use the -listener option. For example:

ant -listener org.apache.tools.ant.XmlLogger will run Ant with a listener
that generates an XML representation of the build progress. This listener is
included with Ant, as is the default listener, which generates the logging to
standard output.

Note: A listener must not access System.out and System.err directly since
ouput on these streams is redirected by Ant’s core to the build event system.
Accessing these streams can cause an infinite loop in Ant. Depending on the
version of Ant, this will either cause the build to terminate or the Java VM to run
out of Stack space. A logger, also, may not access System.out and System.err
directly. It must use the streams with which it has been configured.

——————————————————————————–
Source code integration The other way to extend Ant through Java is to

make changes to existing tasks, which is positively encouraged. Both changes
to the existing source and new tasks can be incorporated back into the Ant
codebase, which benefits all users and spreads the maintenance load around.
Please consult the Getting Involved pages on the Jakarta web site for details on
how to fetch the latest source and how to submit changes for reincorporation
into the source tree.

Ant also has some task guidelines which provides some advice to people
developing and testing tasks. Even if you intend to keep your tasks to yourself,
you should still read this as it should be informative.

9.2 Tasks Desgined for Extension

These classes are desgined to be extended. Always start here when writting your
own task. Class Description Task Base class for all tasks. AbstractCvsTask An-
other task can extend this with some customized output processing JDBCTask
Handles JDBC configuration needed by SQL type tasks. MatchingTask This is
an abstract task that should be used by all those tasks that require to include

377 of 389

378 Developing with Ant

or exclude files based on pattern matching. Pack Abstract Base class for pack
tasks. Unpack Abstract Base class for unpack tasks.

9.3 Build Events

Ant is capable of generating build events as it performs the tasks necessary to
build a project. Listeners can be attached to Ant to receive these events. This
capability could be used, for example, to connect Ant to a GUI or to integrate
Ant with an IDE.

To use build events you need to create an ant Project object. You can then
call the addBuildListener method to add your listener to the project. Your
listener must implement the org.apache.tools.antBuildListener interface. The
listener will receive BuildEvents for the following events

Build started Build finished Target started Target finished Task started Task
finished Message logged If you wish to attach a listener from the command line
you may use the -listener option. For example:

ant -listener org.apache.tools.ant.XmlLogger will run Ant with a listener
that generates an XML representation of the build progress. This listener is
included with Ant, as is the default listener, which generates the logging to
standard output.

Note: A listener must not access System.out and System.err directly since
ouput on these streams is redirected by Ant’s core to the build event system.
Accessing these streams can cause an infinite loop in Ant. Depending on the
version of Ant, this will either cause the build to terminate or the Java VM to run
out of Stack space. A logger, also, may not access System.out and System.err
directly. It must use the streams with which it has been configured.

9.4 Source code integration

The other way to extend Ant through Java is to make changes to existing tasks,
which is positively encouraged. Both changes to the existing source and new
tasks can be incorporated back into the Ant codebase, which benefits all users
and spreads the maintenance load around. Please consult the Getting Involved
pages on the Jakarta web site for details on how to fetch the latest source and
how to submit changes for reincorporation into the source tree.

Ant also has some task guidelines which provides some advice to people
developing and testing tasks. Even if you intend to keep your tasks to yourself,
you should still read this as it should be informative.

378 of 389

9.5 InputHandler 379

9.5 InputHandler

9.5.1 Overview

When a task wants to prompt a user for input, it doesn’t simply read the input
from the console as this would make it impossible to embed Ant in an IDE. In-
stead it asks an implementation of the org.apache.tools.ant.input.InputHandler
interface to prompt the user and hand the user input back to the task.

To do this, the task creates an InputRequest object and passes it to the
InputHandler Such an InputRequest may know whether a given user input is
valid and the InputHandler is supposed to reject all invalid input.

Exactly one InputHandler instance is associated with every Ant process,
users can specify the implementation using the -inputhandler command line
switch.

InputHandler The InputHandler interface contains exactly one method

void handleInput(InputRequest request) throws org.apache.tools.ant.BuildException;

with some pre- and postconditions. The main postcondition is that this
method must not return unless the request considers the user input valid, it is
allowed to throw an exception in this situation.

Ant comes with two built-in implementations of this interface:

DefaultInputHandler This is the implementation you get, when you don’t
use the -inputhandler command line switch at all. This implementation will
print the prompt encapsulated in the request object to Ant’s logging system
and re-prompt for input until the user enters something that is considered valid
input by the request object. Input will be read from the console and the user
will need to press the Return key.

PropertyFileInputHandler This implementation is useful if you want to run
unattended build processes. It reads all input from a properties file and makes
the build fail if it cannot find valid input in this file. The name of the properties
file must be specified in the Java system property ant.input.properties.

The prompt encapsulated in a request will be used as the key when looking
up the input inside the properties file. If no input can be found, the input is
considered invalid and an exception will be thrown.

Note that ant.input.properties must be a Java system property, not an Ant
property. I.e. you cannot define it as a simple parameter to ant, but you can
define it inside the ANT OPTS environment variable.

InputRequest Instances of org.apache.tools.ant.input.InputRequest encapsu-
late the information necessary to ask a user for input and validate this input.

The instances of InputRequest itself will accept any input, but subclasses
may use stricter validations. org.apache.tools.ant.input.MultipleChoiceInputRequest
should be used if the user input must be part of a predefined set of choices.

379 of 389

380 Developing with Ant

9.6 Using Ant Tasks Outside of Ant

9.6.1 Rationale

Ant provides a rich set of tasks for buildfile creators and administrators. But
what about programmers? Can the functionality provided by Ant tasks be used
in java programs?

Yes, and its quite easy. Before getting into the details, however, we should
mention the pros and cons of this approach:

Pros Robust Ant tasks are very robust. They have been banged on by
many people. Ant tasks have been used in many different contexts, and have
therefore been instrumented to take care of a great many boundary conditions
and potentially obscure errors. Cross Platform Ant tasks are cross platform.
They have been tested on all of the volume platforms, and several rather unusual
ones (Netware and OS/390, to name a few). Community Support Using Ant
tasks means you have less of your own code to support. Ant code is supported
by the entire Apache Ant community.

Cons Dependency on Ant Libraries Obviously, if you use an Ant task in your
code, you will have to add ”ant.jar” to your path. Of course, you could use a
code optimizer to remove the unnecessary classes, but you will still probably
require a chunk of the Ant core. Loss of Flexibility At some point, if you find
yourself having to modify the Ant code, it probably makes more sense to ”roll
your own.” Of course, you can still steal some code snippets and good ideas.
This is the beauty of open source!

Example Let’s say you want to unzip a zip file programmatically from java
into a certain directory. Of course you could write your own routine to do this,
but why not use the Ant task that has already been written?

In my example, I wanted to be able to unzip a file from within an XSLT
Transformation. XSLT Transformers can be extended by plugging in static
methods in java. I therefore need a function something like this:

/** * Unzip a zip file into a given directory. * * @param zipFilepath A path-
name representing a local zip file * @param destinationDir where to unzip the
archive to */ static public void unzip(String zipFilepath, String destinationDir)

The Ant task to perform this function is org.apache.tools.ant.taskdefs.Expand.
All we have to do is create a dummy Ant Project and Target, set the Task pa-
rameters that would normally be set in a buildfile, and call execute().

First, let’s make sure we have the proper includes:
import org.apache.tools.ant.Project; import org.apache.tools.ant.Target; im-

port org.apache.tools.ant.taskdefs.Expand; import java.io.File;
The function call is actually quite simple:
static public void unzip(String zipFilepath, String destinationDir)
final class Expander extends Expand public Expander() project = new

Project(); project.init(); taskType = ”unzip”; taskName = ”unzip”; target =
new Target(); Expander expander = new Expander(); expander.setSrc(new
File(zipfile)); expander.setDest(new File(destdir)); expander.execute();

380 of 389

9.6 Using Ant Tasks Outside of Ant 381

In actual practice, you will probably want to add your own error handling
code and you may not want to use a local inner class. However, the point of the
example is to show how an Ant task can be called programmatically in relatively
few lines of code.

The question you are probably asking yourself at this point is: How would I
know which classes and methods have to be called in order to set up a dummy
Project and Target? The answer is: you don’t. Ultimately, you have to be
willing to get your feet wet and read the source code. The above example is
merely designed to whet your appetite and get you started. Go for it!

381 of 389

382 Developing with Ant

382 of 389

Chapter 10

Ant API

[tbd]

383 of 389

384 Ant API

384 of 389

Chapter 11

License

/*
* ==
* The Apache Software License, Version 1.1
* ==
*
* Copyright (C) 2000-2002 The Apache Software Foundation. All
* rights reserved.
*
* Redistribution and use in source and binary forms, with or without modifica-
* tion, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The end-user documentation included with the redistribution, if any, must
* include the following acknowledgment: "This product includes software
* developed by the Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowledgment may appear in the software itself, if
* and wherever such third-party acknowledgments normally appear.
*
* 4. The names "Ant" and "Apache Software Foundation" must not be used to
* endorse or promote products derived from this software without prior
* written permission. For written permission, please contact
* apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache", nor may
* "Apache" appear in their name, without prior written permission of the

385 of 389

386 License

* Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND ANY EXPRESSED OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLU-
* DING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* This software consists of voluntary contributions made by many individuals
* on behalf of the Apache Software Foundation. For more information on the
* Apache Software Foundation, please see <http://www.apache.org/>.
*
*/

386 of 389

Chapter 12

Feedback and
Troubleshooting

If things do not work, especially simple things like ant -version, then something
is wrong with your configuration. Before filing bug reports and emailing all the
ant mailing lists

Check your environment variables. Are ANT HOME and JAVA HOME correct? If
they have quotes or trailing slashes, remove them. Unset CLASSPATH; if that is
wrong things go horribly wrong. Ant does not need the CLASSPATH variable
defined to anything to work. Make sure there are no versions of crimson.jar
or other XML parsers in JRE/ext Is your path correct? is Ant on it? What
about JDK/bin? have you tested this? If you are using Jikes, is it on the
path? A createProcess error (especially with ID=2 on windows) usually means
executable not found on the path. Which version of ant are you running? Other
applications distribute a copy -it may be being picked up by accident. If a task
is failing to run is optional.jar in ANT HOME/lib? Are there any libraries which it
depends on missing? If a task doesn’t do what you expect, run ant -verbose or
ant -debug to see what is happening If you can’t fix your problem, start with
the Ant User Mailing List . These are other ant users who will help you learn
to use ant. If they cannot fix it then someone may suggest filing a bug report,
which will escalate the issue. Remember of course, that support, like all open
source development tasks, is voluntary. If you haven’t invested time in helping
yourself by following the steps above, it is unlikely that anyone will invest the
time in helping you.

Also, if you don’t understand something, the Ant User Mailing List is the
place to ask questions. Not the developer list, nor the individuals whose names
appears in the source and documentation. If they answered all such emails,
nobody would have any time to improve ant.

To provide feedback on this software, please subscribe to the Ant User Mail-
ing List

If you want to contribute to Ant or stay current with the latest development,

387 of 389

388 Feedback and Troubleshooting

join the Ant Development Mailing List
Archives of both lists can be found at http://archives.apache.org/eyebrowse/ViewLists.

A searchable archive can be found at http://marc.theaimsgroup.com. If you
know of any additional archive sites, please report them to the lists.

388 of 389

Chapter 13

Authors

Stephane Bailliez (sbailliez@imediation.com)
Nicola Ken Barozzi (nicolaken@apache.org)
Jacques Bergeron (jacques.bergeron@dogico.com)
Stefan Bodewig (stefan.bodewig@freenet.de)
Patrick Chanezon (chanezon@netscape.com)
James Duncan Davidson (duncan@x180.com)
Tom Dimock (tad1@cornell.edu)
Peter Donald (donaldp@apache.org)
dIon Gillard (dion@apache.org)
Erik Hatcher (ehatcher@apache.org)
Diane Holt (holtdl@yahoo.com)
Bill Kelly (bill.kelly@softwired-inc.com)
Arnout J. Kuiper (ajkuiper@wxs.nl)
Conor MacNeill
Stefano Mazzocchi (stefano@apache.org)
Erik Meade (emeade@geekfarm.org)
Sam Ruby (rubys@us.ibm.com)
Nico Seessle (nico@seessle.de)
Jon S. Stevens (jon@latchkey.com)
Magesh Umasankar
Roger Vaughn (rvaughn@seaconinc.com)
Dave Walend (dwalend@cs.tufts.edu)
Phillip Wells (philwells@rocketmail.com)
Craeg Strong (cstrong@arielpartners.com)
Version: 1.5.3
$Id: credits.html,v 1.15.2.8 2003/04/08 14:17:04 conor Exp $

389 of 389

